Citation: Lü Wenqiang, MENG Fanjin, XU Jingwei. Simple and Highly Efficient Synthesis of Cyanuric Acid by Hydrothermal Method[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 155-159. doi: 10.11944/j.issn.1000-0518.2020.02.190155 shu

Simple and Highly Efficient Synthesis of Cyanuric Acid by Hydrothermal Method

  • Corresponding author: XU Jingwei, jwxu@ciac.ac.cn; mcc@ciac.ac.cn
  • Co-corresponding author:MENG Fajin, assistant peofessor; Tel/Fax:0431-85262342; E-mail:mcc@ciac.ac.cn; Research interests:synthesis and properties of metalloorganic complexes
  • Received Date: 27 May 2019
    Revised Date: 26 July 2019
    Accepted Date: 19 September 2019

Figures(3)

  • A simple and efficient synthesis of cyanuric acid by thermal polymerization and hydrothermal treatment was developed using melamine as the raw material. The product structure was characterized by X-ray single crystal diffraction, nuclear magnetic resonance (NMR), Fourier transform infrared spectrometry (FTIR), mass spectrometry and elemental analysis. Under the optimal hydrothermal reaction temperature of 140℃, the reaction was carried out for 2 h, and the total yield was up to 54%. The synthesis method is simple and has less pollution, providing a new reference method for industrial preparation of cyanuric acid.
  • 加载中
    1. [1]

      Patil S P, Padmanabhan D. A Facile Preparation of (2, 4, 6-14C)-Cyanuric Acid under Solvent-Free Conditions[J]. Label Compd Radiophar, 2002,45:539-542. doi: 10.1002/jlcr.579

    2. [2]

      Liu L, Li X, Wang J. The Application of Trichlorisocyanuric Acid in Industrial Circulating Water[J]. Chem Eng Des Commun, 2017,43(12)3.  

    3. [3]

      Onoda H, Takenaka A. Influence of Addition of Urea and Its Related Compounds on Formation of Various Neodymium and Cerium Phosphates[J]. Mater Chem Phys, 2003,82:194-198. doi: 10.1016/S0254-0584(03)00205-0

    4. [4]

      Qiu Y, Gao L. Blue-Emitting Cyanuric Acid-Melamine Complexes from Urea Thermolysis[J]. Mater Res Bull, 2005,40(5):794-799. doi: 10.1016/j.materresbull.2005.02.003

    5. [5]

      Thottempudi V, Shreeve J M. Synthesis and Promising Properties of a New Family of High-Density Energetic Salts of 5-Nitro-3-trinitromethyl-1H-1, 2, 4-Triazole and 5, 5'-Bis(trinitromethyl)-3, 3'-azo-1H-1, 2, 4-Triazole[J]. J Am Chem Soc, 2011,133(49):19982-19992. doi: 10.1021/ja208990z

    6. [6]

      Gbel M, Kaeaghiosff K, Klap T M. Nitrotetrazolate-2N-oxides and the Strategy of N-Oxide Introduction[J]. J Am Chem Soc, 2010,132(48):17216-17226. doi: 10.1021/ja106892a

    7. [7]

      Jooy H, Shreeve M. High-Density Energetic Mono- or Bis(oxy)-5-Nitroimino Tetrazoles[J]. Angew Chem Int Ed, 2010,49(40):7320-7323. doi: 10.1002/anie.201003866

    8. [8]

      Hammerla A, Klaptket M, Rocha R. Azide-tetrazole Ring-Chain Isomerism in Polyazido-1, 3, 5-triazines, Triazido-s-heptazine, and Diazidotetrazines[J]. Eur J Inorg Chem, 2006,16(11):2210-2228.  

    9. [9]

      Fischer A, Antonietti M, Thomas A. Growth Confined by the Nitrogen Source:Synthesis of Pure Methal Nitride Nanoparticles in Mesoporous Graphitic Carbon Nitride[J]. Adv Mater, 2007,9(2):264-267.  

    10. [10]

      Banertk K, Jooy H, Rüffer T. The Exciting Chemistry of Tetraazidomethane[J]. Angew Chem Int Ed, 2007,46(7):1168-1171. doi: 10.1002/anie.200603960

    11. [11]

      Zhang Q, Shreeve J M. Energetic Ionic Liquids as Explosives and Propellant Fuels:A New Journey of Ionic Liquid Chemistry[J]. Chem Rev, 2014,114(20):10527-10574. doi: 10.1021/cr500364t

    12. [12]

      Yin P, Parrish D A, Shreeve J M. Bis(nitroamino-1, 2, 4-triazolates):N-Bridging Strategy Toward Insensitive Energetic Materials[J]. Angew Chem Int Ed, 2014,53(47):12889-12892. doi: 10.1002/anie.201408127

    13. [13]

      Zhang Y, Parrish D A, Shreeve J M. Derivatives of 5-Nitro-1, 2, 3-2H-triazole-High Performance Energetic Materials[J]. J Mater Chem A, 2013,1(3):585-593. doi: 10.1039/C2TA00136E

    14. [14]

      Yin P, Zhang Q, Zhang J. N-Trinitroethylamino Functionalization of Nitroimidazoles:A New Strategy for High Performance Energetic Materials[J]. J Mater Chem A, 2013,1(25):7500-7510. doi: 10.1039/c3ta11356f

    15. [15]

      Wu Q, Zhu W, Xiao H. A New Design Strategy for High-Energy Low-Sensitivity Explosives:Combining Oxygen Balance Equal to Zero, a Combination of Nitro and Amino Groups, and N-Oxide in One Molecule of 1-Amino-5-nitrotetrazole-3N-oxide[J]. J Mater Chem A, 2014,2(32):13006-13015. doi: 10.1039/C4TA01879F

    16. [16]

      Dippold A A, Klap T M. A Study of Dinitro-bis-1, 2, 4-triazole-1, 1'-diol and Derivatives:Design of High-Performance Insensitive Energetic Materials by the Introduction of N-Oxides[J]. J Am Chem Soc, 2013,135(26):9931-9938. doi: 10.1021/ja404164j

    17. [17]

      Fisher N, Fisher D, Klap T M. Pushing the Limits of Energetic Materials-the Synthesis and Characterization of Dihydroxylammonium 5, 5'-Bistetrazole-1, 1'-Diolate[J]. J Mater Chem, 2012,22(38):20418-20422. doi: 10.1039/c2jm33646d

    18. [18]

      Joo Y H, Shreeve J M. 1-Substituted 5-Aminotetrazoles:Syntheses from CNN3 with Primary Amines[J]. Org Lett, 2008,10(20):4665-4667. doi: 10.1021/ol8019742

    19. [19]

      Joo Y H, Shreeve J M. Energetic Mono-, Di-, and Trisubstituted Nitroiminotetrazoles[J]. Angew Chem Int Ed, 2009,48(3):564-567. doi: 10.1002/anie.200804755

    20. [20]

      Gerd, Janna, Klapotke. Synthesis, Properties and Dimerization Study of Isocyanic Acid[J]. Z Naturforsch B Chem Sci, 2002,57:19-24. doi: 10.1515/znb-2002-0103

    21. [21]

      Chun H, Min S S. Methods and Devices for Preparing Biuret and Cyanuric Acid: CN Pat.10117296[P]. 2008.

    22. [22]

      She D, Yu H, Huang Q. Liquid-Phase Synthesis of Cyanuric Acid from Urea[J]. Molecules, 2010,15:1898-1902. doi: 10.3390/molecules15031898

    23. [23]

      Kroke E. gt-C3N4-The First Stable Binary Carbon(Ⅳ) Nitride[J]. Angew Chem Int Ed, 2014,53:11134-11136. doi: 10.1002/anie.201406427

    24. [24]

      Yan S C, Li Z S, Zou Z G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009,25(17):10397-10401. doi: 10.1021/la900923z

    25. [25]

      WANG Baopin. The Methods of Cyanuric Acid Degradation and Its Industrial Application[D]. Beijing: Beijing University of Chemical Technology, 2013(in Chinese). 

    26. [26]

      MA Luye. Study on Synthesis and Application of Cyanuric Acid[D]. Jinan: Shandong University, 2017(in Chinese). 

    27. [27]

      HU Yangyong. Research on Thermostabiliity of High Temperature and High Concentration Ammonium Nitrate Solution[D]. Huainan: AnHui University of Science and Technology, 2014(in Chinese).

  • 加载中
    1. [1]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    2. [2]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    3. [3]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    4. [4]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    7. [7]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

Metrics
  • PDF Downloads(8)
  • Abstract views(1283)
  • HTML views(364)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return