Citation: ZHANG Tong, OUYANG Jinyang, ZHAO Xiaoli, YANG Xiaoniu. High Efficiency Ternary Polymer Solar Cells Fabricated by Spray Coating[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 24-31. doi: 10.11944/j.issn.1000-0518.2020.01.190295 shu

High Efficiency Ternary Polymer Solar Cells Fabricated by Spray Coating

  • Corresponding author: YANG Xiaoniu, xnyang@ciac.ac.cn
  • Received Date: 1 November 2019
    Revised Date: 21 November 2019
    Accepted Date: 22 November 2019

    Fund Project: the National Natural Science Foundation of China 21574132the National Natural Science Foundation of China 21504090Supported by the National Natural Science Foundation of China(No.21574132, No.21504090)

Figures(6)

  • Non-fullerene small molecule acceptor (ITIC) is introduced into the binary polymer solar cells (PBTIBDTT:PCBM[70]) to build ternary polymer solar cells, which achieves power conversion efficiency (PCE) of 10.95% with more than 200 nm thickness of photoactive layers. The ternary polymer solar cells are further fabricated by spray coating method, and realize 9.06% of PCE. The high efficiency ternary polymer solar cells fabricated by spray coating are suitable for the roll-to-roll printing, exhibiting great application prospects.
  • 加载中
    1. [1]

      Li G, Shrotriya V, Huang J S. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends[J]. Nat Mater, 2005,4(11):864-868. doi: 10.1038/nmat1500

    2. [2]

      Li G, Zhu R, Yang Y. Polymer Solar Cells[J]. Nat Photonics, 2012,6(3):153-161. doi: 10.1038/nphoton.2012.11

    3. [3]

      Mazzio K A, Luscombe C K. The Future of Organic Photovoltaics[J]. Chem Soc Rev, 2015,44(1):78-90. doi: 10.1039/C4CS00227J

    4. [4]

      Cheng P, Li G, Zhan X. Next-Generation Organic Photovoltaics Based on Non-fullerene Acceptors[J]. Nat Photonics, 2018,12(3):131-142. doi: 10.1038/s41566-018-0104-9

    5. [5]

      Meng L, Zhang Y, Wan X. Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency[J]. Science, 2018,361(6407):1094-1098. doi: 10.1126/science.aat2612

    6. [6]

      BIN Haijun, LI Yongfang. Recent Research Progress of Photovoltaic Materials for Nonfullerene Polymer Solar Cells[J]. Acta Polym Sin, 2017(9):1444-1461.  

    7. [7]

      DAI Shuixing, ZHAN Xiaowei. Fused-Ring Electron Acceptors for Organic Solar Cells[J]. Acta Polym Sin, 2017(11):1706-1714.  

    8. [8]

      YI Yanlin, LIANG Qiuju, LI Dongling. Constructing Interpenetrating Network of Polymer/Non-fullerene Blend System by Small Molecule Preferential Crystallization[J]. Chinese J Appl Chem, 2019,36(4):423-430.  

    9. [9]

      Gu X, Zhou Y, Gu K. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend[J]. Adv Energy Mater, 2017,7(14)1602742. doi: 10.1002/aenm.201602742

    10. [10]

      Ye L, Xiong Y, Zhang Q. Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent[J]. Adv Mater, 2018,30(8)1705485. doi: 10.1002/adma.201705485

    11. [11]

      Gasparini N, Lucera L, Salvador M. High-Performance Ternary Organic Solar Cells with Thick Active Layer Exceeding 11% Efficiency[J]. Energy Environ Sci, 2017,10(4):885-892. doi: 10.1039/C6EE03599J

    12. [12]

      Gasparini N, Salleo A, McCulloch I. The Role of the Third Component in Ternary Organic Solar Cells[J]. Nat Rev Mater, 2019,4(4):229-242.  

    13. [13]

      Zhang J, Zhao Y, Fang J. Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy[J]. Small, 2017,13(21)1700388. doi: 10.1002/smll.201700388

    14. [14]

      Zhang T, Zhao X L, Yang D L. Ternary Organic Solar Cells with > 11% Efficiency Incorporating Thick Photoactive Layer and Nonfullerene Small Molecule Acceptor[J]. Adv Energy Mater, 2018,8(4)1701691. doi: 10.1002/aenm.201701691

    15. [15]

      Yang D L, Li Z L, Li Z D. Novel Wide Band Gap Copolymers Featuring Excellent Comprehensive Performance Towards the Practical Application for Organic Solar Cells[J]. Polym Chem, 2017,8(30):4332-4338. doi: 10.1039/C7PY00689F

    16. [16]

      An Q S, Zhang F J, Zhang J. Versatile Ternary Organic Solar Cells:A Critical Review[J]. Energy Environ Sci, 2016,9(2):281-322. doi: 10.1039/C5EE02641E

    17. [17]

      Lin Y Z, Wang J Y, Zhang Z G. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Adv Mater, 2015,27(7):1170-1174. doi: 10.1002/adma.201404317

    18. [18]

      ZHANG Tong, ZHAO Xiaoli, YANG Xiaoniu. Research Progress in High Efficiency Thick Film Polymer Solar Cells[J]. Sci China Chem, 2018,48(8):815-828.  

    19. [19]

      YANG Dalei, LI Zelin, ZHAO Xiaoli. Synthesis and Characterization of a High Hole Mobility Material for Polymer Solar Cells[J]. Chinese J Appl Chem, 2010,27(7):754-758.  

    20. [20]

      Zhang T, Chen Z B, Yang D L. Fabricating High Performance Polymer Photovoltaic Modules by Creating Large-Scale Uniform Films[J]. Org Electron, 2016,32:126-133. doi: 10.1016/j.orgel.2016.02.007

    21. [21]

      An M, Xie F, Geng X. A High-Performance D-A Copolymer Based on Dithieno[3, 2-b:2′, 3′-d]Pyridin-5(4H)-One Unit Compatible with Fullerene and Nonfullerene Acceptors in Solar Cells[J]. Adv Energy Mater, 2017,7(4)1602509.  

    22. [22]

      Zhang Y, Griffin J, Scarratt N W. High Efficiency Arrays of Polymer Solar Cells Fabricated by Spray-Coating in Air[J]. Prog Photovoltaics, 2016,24(3):275-282. doi: 10.1002/pip.2665

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      . Cover and Table of Contents for Vol.40 No. 12. Acta Physico-Chimica Sinica, 2024, 40(12): -.

    14. [14]

      . . University Chemistry, 2024, 39(2): 0-0.

    15. [15]

      . . University Chemistry, 2024, 39(3): 0-0.

    16. [16]

      . . University Chemistry, 2024, 39(4): 0-0.

    17. [17]

      . . University Chemistry, 2024, 39(5): 0-0.

    18. [18]

      . . University Chemistry, 2024, 39(6): 0-0.

    19. [19]

      . . University Chemistry, 2024, 39(7): 0-0.

    20. [20]

      . . University Chemistry, 2024, 39(8): 0-0.

Metrics
  • PDF Downloads(3)
  • Abstract views(981)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return