Citation: ZENG Huijuan, LIN Meijuan, LIU Chao, CHEN Longjie, ZHANG Yushan, LING Qidan. White Phosphorescent Star-Shape Polymers Derived from Poly(fluorene-carbazole) with Green-Yellow Iridium Complex as the Cores[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 16-23. doi: 10.11944/j.issn.1000-0518.2020.01.190150 shu

White Phosphorescent Star-Shape Polymers Derived from Poly(fluorene-carbazole) with Green-Yellow Iridium Complex as the Cores

  • Corresponding author: LIN Meijuan, mjlin@fjnu.edu.cn
  • Received Date: 23 May 2019
    Revised Date: 12 July 2019
    Accepted Date: 26 August 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.21374017), and the Natural Science Foundation of Fujian Province(No.2017J01683)the Natural Science Foundation of Fujian Province 2017J01683the National Natural Science Foundation of China 21374017

Figures(8)

  • An efficient green-yellow light iridium complex based on 2-(4-brominephenyl)-1-octyl-benzimidazole as cyclometalated ligand and 3-bromine-5-(pyridin-2-yl)-1H-1, 2, 4-triazole as ancillary ligand was synthesized. A series of novel star-shape phosphorescent polymers (P2.5, P5.0 and P10) was synthesized by employing the iridium complex as the core guest and the poly(fluorine-carbazole) as the arm host through Suzuki cross-coupling. The properties of the iridium complex and polymers were studied. The results showed that the iridium complex emitted green-yellow light with peaks at 490, 526 and 565 nm and its fluorescent quantum efficiency was 32.06%. Fluorescent lifetimes for the iridium complex and the polymers are in the microsecond regime (1.09~3.93 s). Such long-lived excited states clearly suggest that the emitting state has triplet phosphorescent emission. The yellow light intensity was enhanced with the increasing of iridium complex content, indicating that there exists partial energy transfer from host to guest, and the emission color of polymers shifts from blue to yellow by adjusting the proportion of the iridium complex. When the mole fraction of iridium complex reached to 2.5%, the white-light polymer (P2.5) was obtained, the CIE1931 chromaticity coordinate was (0.30, 0.32), the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were 5.49 and 2.43 eV respectively, fluorescent quantum efficiency was 14.3%, and fluorescent lifetime was 2.22 s. The polymer having good thermal stability can satisfy the requirements of luminescent materials.
  • 加载中
    1. [1]

      Ma Z, Chen L, Ding J. Green Electrophosphorescent Polymers with Poly(3, 6-Carbazole) as the Backbone:A Linear Structure Does Realize High Efficiency[J]. Adv Mater, 2011,23:3726-3729. doi: 10.1002/adma.201102140

    2. [2]

      Zhen H, Luo J, Yang W. Novel Light-Emitting Electrophosphorescent Copolymers Based on Carbazole with an Ir Complex on the Backbone[J]. J Mater Chem, 2007,17(27):2824-2831. doi: 10.1039/b618990c

    3. [3]

      Chen Q, Liu N, Ying L. Novel White-Light-Emitting Polyfluorenes with Benzothiadiazole and Ir Complex on the Backbone[J]. Polymer, 2009,50(6):1430-1437. doi: 10.1016/j.polymer.2009.01.017

    4. [4]

      Cho W, Karthikeyan N S, Kim S. Synthesis and Characterization of White Light-Emitting Polyfluorene-Based Copolymers Containing New Red Iridium Complex in the Main Chain[J]. Synth Met, 2013,175:68-74. doi: 10.1016/j.synthmet.2013.04.029

    5. [5]

      Baschieri A, Monti F, Armaroli N. Luminescent Methacrylic Copolymers with Side-Chain Cyclometalated Iridium(Ⅲ) Complexes[J]. Dyes Pigm, 2019,160:188-197. doi: 10.1016/j.dyepig.2018.08.003

    6. [6]

      Ma Z, Ding J, Zhang B. Red-Emitting Polyfluorenes Grafted with Quinoline-Based Iridium Complex:"Simple Polymeric Chain, Unexpected High Efficiency"[J]. Adv Funct Mater, 2010,20(1):138-146. doi: 10.1002/adfm.200901595

    7. [7]

      Sun J, Wu D, Gao L. Polyfluorene-Based White Light Conjugated Polymers Incorporating Orange Iridium(Ⅲ) Complexes:The Effect of Steric Configuration on Their Photophysical and Electroluminescent Properties[J]. RSC Adv, 2018,8(3):1638-1646. doi: 10.1039/C7RA11204A

    8. [8]

      Sun J, Wang H, Xu H. A Novel High-Efficiency White Hyperbranched Polymer Derived from Polyfluorene with Green and Red Iridium(Ⅲ) Complexes as the Cores[J]. Dyes Pigm, 2016,130:191-201. doi: 10.1016/j.dyepig.2016.03.006

    9. [9]

      Wu D, Zhang T, Sun J. Hyperbranched Polymers with Aggregation-Induced Emission Property for Solution-Processed White Organic Light-Emitting Diodes[J]. Tetrahedron, 2018,74(50):7218-7227. doi: 10.1016/j.tet.2018.10.057

    10. [10]

      Chen L, Wang S, Yan Z. An Oligocarbazole-Encapsulated Heteroleptic Red Iridium Complex for Solution-Processed Nondoped Phosphorescent Organic Light-Emitting Diodes with over 10% External Quantum Efficiency[J]. J Mater Chem C, 2017,5(23):5749-5756. doi: 10.1039/C7TC00145B

    11. [11]

      Zhong Z, Wang X, Ma Y. Synthesis and Characterization of Highly Efficient Solution-Processable Orange Ir(Ⅲ) Complexes for Phosphorescent OLED Applications[J]. Org Electron, 2018,57:178-185. doi: 10.1016/j.orgel.2018.03.008

    12. [12]

      Feng Z, Tao P, Zou L. Hyperbranched Phosphorescent Conjugated Polymer Dots with Iridium(Ⅲ) Complex as the Core for Hypoxia Imaging and Photodynamic Therapy[J]. ACS Appl Mater Interfaces, 2017,9(34):28319-28330. doi: 10.1021/acsami.7b09721

    13. [13]

      Liu B, Dang F, Tian Z. High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices[J]. ACS Appl Mater Interfaces, 2017,9(19):16360-16374. doi: 10.1021/acsami.7b04509

    14. [14]

      Zhao Y, Lin Z H, Zhou Z G. White Light-Emitting Devices Based on Star-Shape Like Polymers with Diarylmaleimde Fluorophores on the Side Chain of Polyfluorene Arms[J]. Org Electron, 2016,31:183-190. doi: 10.1016/j.orgel.2016.01.026

    15. [15]

      Park M J, Kwak J, Lee J. Single Chain White-Light-Emitting Polyfluorene Copolymers Containing Iridium Complex Coordinated on the Main Chain[J]. Macromolecules, 2010,43(3):1379-1386. doi: 10.1021/ma902318t

    16. [16]

      YUAN Ting, MENG Ting, LI Shuhua. Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials[J]. Chinese J Appl Chem, 2018,35(8):871-880.  

    17. [17]

      Nonoyama M. Benzo[h]quinolin-10-yl-N Iridium(Ⅲ) Complexes[J]. Bull Chem Soc Jpn, 1974,47(3):767-768. doi: 10.1246/bcsj.47.767

    18. [18]

      Lin M J, Tang Q, Xing G. The Synthesis and Luminescent Properties of Trichromatic Iridium Complexes Based on 2-(4-Bromophenyl)-1-Hydrogen-Benzimidazole[J]. Synth Met, 2017,223:87-93. doi: 10.1016/j.synthmet.2016.11.040

    19. [19]

      Zhen H, Luo C, Yang W. Electrophosphorescent Chelating Copolymers Based on Linkage Isomers of Naphthylpyridine-Iridium Complexes with Fluorene[J]. Macromolecules, 2006,39(5):1693-1700. doi: 10.1021/ma052057h

  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    11. [11]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    12. [12]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    13. [13]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    14. [14]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(4)
  • Abstract views(1352)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return