Citation: LI Jiaqi, FU Dayou, WANG Zhuqing, TAN Wenyuan, CHEN Yuqin, JI Gangyang. Online Ozone Detection Method Based on Gas-Liquid Phase Chemiluminescence Technology[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 96-102. doi: 10.11944/j.issn.1000-0518.2020.01.190136 shu

Online Ozone Detection Method Based on Gas-Liquid Phase Chemiluminescence Technology

  • Corresponding author: FU Dayou, 425105638@qq.com
  • Received Date: 13 May 2019
    Revised Date: 8 July 2019
    Accepted Date: 19 August 2019

    Fund Project: Supported by the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering(No.y2018057), the Sichuan Institute of Technology Talent Introduction Project(No.2016RCL17), the Sichuan Zigong City Science and Technology Bureau Project(No.2018YYJC12), the Fine Chemical Additives and Surfactants Sichuan Higher Education Funded by the Key Laboratory Project(No.2018JXY06), the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering(No.y2018058), and the Zigong City Science and Technology Bureau Project(No.2017xc20)the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering y2018058the Sichuan Zigong City Science and Technology Bureau Project 2018YYJC12the Zigong City Science and Technology Bureau Project 2017xc20the Fine Chemical Additives and Surfactants Sichuan Higher Education Funded by the Key Laboratory Project 2018JXY06the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering y2018057the Sichuan Institute of Technology Talent Introduction Project 2016RCL17

Figures(7)

  • Based on luminol chemiluminescence system, a self-developed online ozone concentration detector was used to establish a real-time online method for detecting ozone concentration for the determination of ozone gas at trace level. The effects of luminol, potassium hydroxide, alcohols and surfactants on the chemiluminescence intensity were investigated. The results showed that ethylene glycol (volume fraction 1.5%), methanol (volume fraction 1.5%), ethanol (volume fraction 1.0%), and glycerol (volume fraction 3.0%) were added to luminol (0.005 mol/L) and potassium hydroxide (0.05 mol/L) can significantly enhance the luminescence signal of O3 in the luminol system, and formaldehyde (volume fraction 3.0%) can effectively inhibit the interference of NO2 signal. At the same time, the detection limit of ozone was 1.26 μg/m3, the relative standard deviation was 0.32%, and the relative error was 0.75%. This ozone determination system has the advantages of stable signal, good precision, high accuracy and low detection limit. It is suitable for online continuous detection of trace O3 in the atmosphere.
  • 加载中
    1. [1]

      Jia L, Ge M F, Xu Y F. Advances in Atmospheric Ozone Chemistry[J]. Prog Chem, 2006,18(11):1565-1574.  

    2. [2]

      Brune W H, Baier B C, Thomas J. Ozone Production Chemistry in the Presence of Urban Plumes[J]. Faraday Discuss, 2016,189:169-189.

    3. [3]

      Finlayson-Pitts B J, PittsJr J N. Atmospheric Chemistry of Tropospheric Ozone Formation:Scientific and Regulatory Implications[J]. Air Repair, 1993,43(8):1091-1100.

    4. [4]

      WANG Dan. Discussion on Standardization Measures for Prevention and Control of Atmospheric Ozone Pollution[J]. China Standard, 2017(6):247-248.  

    5. [5]

      LI Wangxia. Exploration on Monitoring and Prevention of Ozone in Ambient Air Pollutants[J]. Resour Econom Environ Prot, 2018(8):38-38.  

    6. [6]

      Birdsall C M, Jenkins A C, Spadinger E. Iodometric Determination of Ozone[J]. Anal Chem, 1952,24(4):662-664.  

    7. [7]

      Qi W J, Wu D, Zhao J M. Fluorescent Silica Nanoparticle-Based Probe for the Detection of Ozone via Fluorescence Resonance Energy Transfer[J]. Analyst, 2013,138(21):6305-6308.  

    8. [8]

      Qi W J, Liu Z Y, Lai J P. Detection of Ozone Based on Its Striking Inhibition of Tris(1, 10-phenanthroline)ruthenium(ii)/Glyoxal Electrochemiluminescence[J]. Chem Commun, 2014,50(60):8164-8166.

    9. [9]

      Qin S H, Cheng L, Selorm A L. An Overview of Ozone Research[J]. J Avd Oxid Technol, 2018,21(1):297-302.  

    10. [10]

      XIE Jianrong. Summary of Eommon Methods for the Determination of Ozone[J]. Fujian Anal Test, 1999(2):1045-1053.

    11. [11]

      QI Bin, WANG Zhuqing, YANG Hongyan. On-line Chemiluminescence Instrument for Measurement of Nitrogen Dioxide[J]. Chinese J Anal Chem, 2010,38(4):607-610.  

    12. [12]

      Regener V H. Measurement of Atmospheric Ozone with the Chemiluminescent Method[J]. J Geophys Res, 1964,69(18):3795-3800.  

    13. [13]

      WANG Zhuqing, ZHENG Yi, YANG Bing. A Real-Time Online Ozone Analyzer Based on the Gas-Liquid Surface Chemiluminescence[J]. Anal Instrum, 2016(3):6-10.

    14. [14]

      Finlayson B J, Pitts J N, Atkinson Jr R. Low-Pressure Gas-Phase Ozone-Olefin Reactions. Chemiluminescence, Kinetics, and Mechanisms[J]. J Am Chem Soc, 1974,96(17):5356-5367.

    15. [15]

      Saqib M, Qi L, Hui P. Development of Luminol-N-hydroxyphthalimide Chemiluminescence System for Highly Selective and Sensitive Detection of Superoxide Dismutase, Uric Acid And Co2+[J]. Biosens Bioelectron, 2017,99:519-524.  

    16. [16]

      Fontijn A, Sabadell A J, Ronco R J. Homogeneous Chemiluminescent Measurement of Nitric Oxide with Ozone. Implications for Continuous Selective Monitoring of Gaseous Air Pollutants[J]. Anal Chem, 1970,42(6):575-579.

    17. [17]

      Mikuška P, Večeřa Z. Application of Gallic Acid and Xanthene Dyes for Determination of Ozone in Air with a Chemiluminescence Aerosol Detector[J]. Anal Chim Acta, 1998,374(2/3):297-302.  

    18. [18]

      Lu G, Oda T, Araki H. Transformation of Stored Energy into Light in the Chemiluminescence of 1, 2-Dioxetanes[J]. Chemphotochem, 2018,2(5):421-424.  

    19. [19]

      XUE Xiuyuan, CUI Haisheng. The Application of Chemiluminescence Analysis in Environmental Monitoring[J]. J Baoji Coll Arts Sci(Nat Sci), 2018,38(3):35-43.  

    20. [20]

      Mikuska P, Vecera Z. Effect of Complexones and Tensides on Selectivity of Nitrogen Dioxide Determination in Air with a Chemiluminescence Aerosol Detector[J]. Anal Chim Acta, 2000,410(1/2):159-165.  

  • 加载中
    1. [1]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    2. [2]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Mingxiang Shen Tianmei Li Qingcao Li Wanli Wei Xingyu Long . Crimson Romance. University Chemistry, 2024, 39(6): 318-325. doi: 10.3866/PKU.DXHX202311038

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    12. [12]

      Ruihu Wang Aidang Lu . 新型铬(VI)检测试纸的制备及应用——介绍一个应用化学综合实验. University Chemistry, 2025, 40(8): 284-290. doi: 10.12461/PKU.DXHX202410102

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    15. [15]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    16. [16]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

Metrics
  • PDF Downloads(3)
  • Abstract views(1690)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return