Citation: LI Jiaqi, FU Dayou, WANG Zhuqing, TAN Wenyuan, CHEN Yuqin, JI Gangyang. Online Ozone Detection Method Based on Gas-Liquid Phase Chemiluminescence Technology[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 96-102. doi: 10.11944/j.issn.1000-0518.2020.01.190136 shu

Online Ozone Detection Method Based on Gas-Liquid Phase Chemiluminescence Technology

  • Corresponding author: FU Dayou, 425105638@qq.com
  • Received Date: 13 May 2019
    Revised Date: 8 July 2019
    Accepted Date: 19 August 2019

    Fund Project: Supported by the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering(No.y2018057), the Sichuan Institute of Technology Talent Introduction Project(No.2016RCL17), the Sichuan Zigong City Science and Technology Bureau Project(No.2018YYJC12), the Fine Chemical Additives and Surfactants Sichuan Higher Education Funded by the Key Laboratory Project(No.2018JXY06), the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering(No.y2018058), and the Zigong City Science and Technology Bureau Project(No.2017xc20)the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering y2018058the Sichuan Zigong City Science and Technology Bureau Project 2018YYJC12the Zigong City Science and Technology Bureau Project 2017xc20the Fine Chemical Additives and Surfactants Sichuan Higher Education Funded by the Key Laboratory Project 2018JXY06the Innovation Fund of Postgraduate, Sichuan University of Science and Engineering y2018057the Sichuan Institute of Technology Talent Introduction Project 2016RCL17

Figures(7)

  • Based on luminol chemiluminescence system, a self-developed online ozone concentration detector was used to establish a real-time online method for detecting ozone concentration for the determination of ozone gas at trace level. The effects of luminol, potassium hydroxide, alcohols and surfactants on the chemiluminescence intensity were investigated. The results showed that ethylene glycol (volume fraction 1.5%), methanol (volume fraction 1.5%), ethanol (volume fraction 1.0%), and glycerol (volume fraction 3.0%) were added to luminol (0.005 mol/L) and potassium hydroxide (0.05 mol/L) can significantly enhance the luminescence signal of O3 in the luminol system, and formaldehyde (volume fraction 3.0%) can effectively inhibit the interference of NO2 signal. At the same time, the detection limit of ozone was 1.26 μg/m3, the relative standard deviation was 0.32%, and the relative error was 0.75%. This ozone determination system has the advantages of stable signal, good precision, high accuracy and low detection limit. It is suitable for online continuous detection of trace O3 in the atmosphere.
  • 加载中
    1. [1]

      Jia L, Ge M F, Xu Y F. Advances in Atmospheric Ozone Chemistry[J]. Prog Chem, 2006,18(11):1565-1574.  

    2. [2]

      Brune W H, Baier B C, Thomas J. Ozone Production Chemistry in the Presence of Urban Plumes[J]. Faraday Discuss, 2016,189:169-189.

    3. [3]

      Finlayson-Pitts B J, PittsJr J N. Atmospheric Chemistry of Tropospheric Ozone Formation:Scientific and Regulatory Implications[J]. Air Repair, 1993,43(8):1091-1100.

    4. [4]

      WANG Dan. Discussion on Standardization Measures for Prevention and Control of Atmospheric Ozone Pollution[J]. China Standard, 2017(6):247-248.  

    5. [5]

      LI Wangxia. Exploration on Monitoring and Prevention of Ozone in Ambient Air Pollutants[J]. Resour Econom Environ Prot, 2018(8):38-38.  

    6. [6]

      Birdsall C M, Jenkins A C, Spadinger E. Iodometric Determination of Ozone[J]. Anal Chem, 1952,24(4):662-664.  

    7. [7]

      Qi W J, Wu D, Zhao J M. Fluorescent Silica Nanoparticle-Based Probe for the Detection of Ozone via Fluorescence Resonance Energy Transfer[J]. Analyst, 2013,138(21):6305-6308.  

    8. [8]

      Qi W J, Liu Z Y, Lai J P. Detection of Ozone Based on Its Striking Inhibition of Tris(1, 10-phenanthroline)ruthenium(ii)/Glyoxal Electrochemiluminescence[J]. Chem Commun, 2014,50(60):8164-8166.

    9. [9]

      Qin S H, Cheng L, Selorm A L. An Overview of Ozone Research[J]. J Avd Oxid Technol, 2018,21(1):297-302.  

    10. [10]

      XIE Jianrong. Summary of Eommon Methods for the Determination of Ozone[J]. Fujian Anal Test, 1999(2):1045-1053.

    11. [11]

      QI Bin, WANG Zhuqing, YANG Hongyan. On-line Chemiluminescence Instrument for Measurement of Nitrogen Dioxide[J]. Chinese J Anal Chem, 2010,38(4):607-610.  

    12. [12]

      Regener V H. Measurement of Atmospheric Ozone with the Chemiluminescent Method[J]. J Geophys Res, 1964,69(18):3795-3800.  

    13. [13]

      WANG Zhuqing, ZHENG Yi, YANG Bing. A Real-Time Online Ozone Analyzer Based on the Gas-Liquid Surface Chemiluminescence[J]. Anal Instrum, 2016(3):6-10.

    14. [14]

      Finlayson B J, Pitts J N, Atkinson Jr R. Low-Pressure Gas-Phase Ozone-Olefin Reactions. Chemiluminescence, Kinetics, and Mechanisms[J]. J Am Chem Soc, 1974,96(17):5356-5367.

    15. [15]

      Saqib M, Qi L, Hui P. Development of Luminol-N-hydroxyphthalimide Chemiluminescence System for Highly Selective and Sensitive Detection of Superoxide Dismutase, Uric Acid And Co2+[J]. Biosens Bioelectron, 2017,99:519-524.  

    16. [16]

      Fontijn A, Sabadell A J, Ronco R J. Homogeneous Chemiluminescent Measurement of Nitric Oxide with Ozone. Implications for Continuous Selective Monitoring of Gaseous Air Pollutants[J]. Anal Chem, 1970,42(6):575-579.

    17. [17]

      Mikuška P, Večeřa Z. Application of Gallic Acid and Xanthene Dyes for Determination of Ozone in Air with a Chemiluminescence Aerosol Detector[J]. Anal Chim Acta, 1998,374(2/3):297-302.  

    18. [18]

      Lu G, Oda T, Araki H. Transformation of Stored Energy into Light in the Chemiluminescence of 1, 2-Dioxetanes[J]. Chemphotochem, 2018,2(5):421-424.  

    19. [19]

      XUE Xiuyuan, CUI Haisheng. The Application of Chemiluminescence Analysis in Environmental Monitoring[J]. J Baoji Coll Arts Sci(Nat Sci), 2018,38(3):35-43.  

    20. [20]

      Mikuska P, Vecera Z. Effect of Complexones and Tensides on Selectivity of Nitrogen Dioxide Determination in Air with a Chemiluminescence Aerosol Detector[J]. Anal Chim Acta, 2000,410(1/2):159-165.  

  • 加载中
    1. [1]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Mingxiang Shen Tianmei Li Qingcao Li Wanli Wei Xingyu Long . Crimson Romance. University Chemistry, 2024, 39(6): 318-325. doi: 10.3866/PKU.DXHX202311038

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    18. [18]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    19. [19]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(2)
  • Abstract views(1259)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return