V-N Co-doped Mesoporous Carbon Nanomaterials as Catalysts for Artificial N2 Reduction
- Corresponding author: YAO Chenzhong, E-mail:yaochzh1999@126.com
Citation:
LI Lin, REN Huimin, WEI Bohui, LI Jun, WANG Jie, LI Hui, YAO Chenzhong. V-N Co-doped Mesoporous Carbon Nanomaterials as Catalysts for Artificial N2 Reduction[J]. Chinese Journal of Applied Chemistry,
;2020, 37(8): 930-938.
doi:
10.11944/j.issn.1000-0518.2020.00.200037
Gruber N, Galloway J N. An Earth-System Perspective of the Global Nitrogen Cycle[J]. Nature, 2008,451(7176):293-296. doi: 10.1038/nature06592
Erisman J W, Sutton M A, Galloway J. How a Century of Ammonia Synthesis Changed the World[J]. Nat Geosci, 2008,1(10):636-639. doi: 10.1038/ngeo325
Shi L, Li Q, Ling C. Metal-free Electrocatalyst for Reducing Nitrogen to Ammonia Using a Lewis Acid Pair[J]. J Mater Chem A, 2019,7(9):4865-4871. doi: 10.1039/C8TA11025E
Schlçgl R. Catalytic Synthesis of Ammonia-A "Never-ending Story"?[J]. Angew Chem Int Ed, 2003,42(18):2004-2008. doi: 10.1002/anie.200301553
Rosca V, Duca M, De Groot M T. Nitrogen Cycle Electrocatalysis[J]. Chem Rev, 2009,109(6):2209-2244. doi: 10.1021/cr8003696
Geng Z, Liu Y, Kong X, et al. Achieving a Record-High Yield Rate of 120.9μg NH3 mg-1 cat·h-1 for N2 Electrochemical Reduction over Ru Single-atom Catalysts[J]. Adv Mater, 2018, 30(40): 1803498(1-6).
Ren X, Cui G, Chen L. Electrochemical N2 Fixation to NH3 under Ambient Conditions:Mo2N Nanorod as a Highly Efficient and Selective Catalyst[J]. Chem Commun, 2018,54(61):8474-8477. doi: 10.1039/C8CC03627F
WANG Ya, YANG Yulu, CHU Yiyue. Research Progess of Electrocatalytic Nitrogen Reduction Catalysts[J]. Chem Res, 2019,30(5):532-536.
Xu B, Liu Z, Qiu W. La2O3 Nanoplate:An Efficient Electrocatalyst for Atificial N2 Fixation to NH3 with Excellent Selectivity at Ambient Condition[J]. Electrochim Acta, 2019,298:106-111. doi: 10.1016/j.electacta.2018.12.084
Zhang L, Ji X Q, Ren X, et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies[J]. Adv Mater, 2018, 30(28): 1800191(1-6).
Xia L, Wu X, Wang Y, et al. S-doped Carbon Nanospheres: An Efficient Electrocatalyst Toward Artificial N2 Fixation to NH3[J]. Small Methods, 2019, 3(6): 1800251(1-5).
Chen S, Jang H, Wang J. Bimetallic Metal-organic Framework-derived MoFe-PC Microspheres for Electrocatalytic Ammonia Synthesis under Ambient Cnditions[J]. J Mater Chem A, 2020,8(4):2099-2104. doi: 10.1039/C9TA10524G
Han X Q, Lang Z L, Yan L K, et al. Atomic Nb Anchoring on Graphdiyne as a New Potential Electrocatalyst for Nitrogen Fixation: A Computational View[J]. Adv Theory Simul, 2019, 2(12): 1900132(1-7).
Kyriakou V, Garagounis I, Vasileiou E. Progress in the Electrochemical Synthesis of Ammonia[J]. Catal Today, 2016,286:2-13. doi: 10.1016/j.cattod.2016.06.014
Zhu D, Zhang L, Ruther R E. Photo-illuminated Diamond as a Solid-state Source of Solvated Electrons in Water for Nitrogen Reduction[J]. Nat Mater, 2013,12(6):836-841.
Hu B, Hu M, Seefeldt L. Electrochemical Dinitrogen Reduction to Ammonia by Mo2N:Catalysis or Decomposition?[J]. ACS Energy Lett, 2019,4(5):1053-1054. doi: 10.1021/acsenergylett.9b00648
Zhang R, Zhang Y, Ren X. High-efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array[J]. ACS Sustainable Chem Eng, 2018,6(8):9545-9549. doi: 10.1021/acssuschemeng.8b01261
Wang L, Xia M, Wang H. Greening Ammonia Toward the Solar Ammonia Refinery[J]. Joule, 2018,2(6):1055-1074. doi: 10.1016/j.joule.2018.04.017
Zhang X, Liu Q, Shi X. TiO2 Nanoparticles-Reduced Graphene Oxide Hybrid:An Afficient and Durable Electrocatalyst toward Artificial N2 Fixation to NH3 under Ambient Conditions[J]. J Mater Chem A, 2018,6(36):17303-17306. doi: 10.1039/C8TA05627G
Zhang Y, Qiu W, Ma Y. High-performance Electrohydrogenation of N2 to NH3 Catalyzed by Multishelled Hollow Cr2O3 Microspheres under Ambient Conditions[J]. ACS Catal, 2018,8(9):8540-8544. doi: 10.1021/acscatal.8b02311
Han J, Liu Z, Ma Y. Ambient N2 Fixation to NH3 at Ambient Conditions:Using Nb2O5 Nanofiber as a High-performance Electrocatalyst[J]. Nano Energy, 2018,52:264-270. doi: 10.1016/j.nanoen.2018.07.045
Hu L, Khaniya A, Wang J. Ambient Electrochemical Ammonia Synthesis with High Selectivity on Fe/Fe Oxide Catalyst[J]. ACS Catal, 2018,8(10):9312-9319. doi: 10.1021/acscatal.8b02585
Zhao H, Zhang D, Wang Z, et al. High-Performance Nitrogen Electroreduction at Low Overpotential byIintroducing Pb to Pd Nanosponges[J]. Appl Catal B, 2020, 265: 118481.
Wu T, Kong W, Zhang Y. Greatly Enhanced Electrocatalytic N2 Reduction on TiO2 via V Doping[J]. Small Methods, 2019,3(11)1900356. doi: 10.1002/smtd.201900356
Cherkasov N, Ibhadon A O, Fitzpatrick P. A Review of the Existing and Alternative Methods for Greener Nitrogen Fixation[J]. Chem Eng Process, 2015,90:24-33. doi: 10.1016/j.cep.2015.02.004
CHEN Si, SUN Lizhen, SHU Xinxin. Graphene-Based Catalysts for Efficient Electrocatalysitc Application[J]. Chinese J Appl Chem, 2018,35(3):272-285.
Tang C, Qiao S Z. How to Explore Ambient Electrocatalytic Nitrogen Reduction Reliably and Insightfully[J]. Chem Soc Rev, 2019,48(12):3166-3180. doi: 10.1039/C9CS00280D
Mukherjee S, Cullen D A, Karakalos S. Metal-Organic Framework-Derived Nitrogen-Doped Highly Disordered Carbon for Electrochemical Ammonia Synthesis Using N2 and H2O in Alkaline Electrolytes[J]. Nano Energy, 2018,48:217-226. doi: 10.1016/j.nanoen.2018.03.059
Feng J, Zhu X, Chen Q. Ultrasmall V8C7 Nanoparticles Embedded in Conductive Carbon for Efficient Electrocatalytic N2 Reduction toward Ambient NH3 Production[J]. J Mater Chem A, 2019,7(46):26227-26230. doi: 10.1039/C9TA09439C
Li S J, Bao D, Shi M M, et al. Amorphizing of Au Nanoparticles by CeOx RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions[J]. Adv Mater, 2017, 29(33): 1700001(1-6).
Chen S, Perathoner S, Ampelli C. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-nanotube-based Electrocatalyst[J]. Angew Chem Int Ed, 2017,56(10):2699-2703. doi: 10.1002/anie.201609533
Abghoui Y, Garden A L, Howalt J G. Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V:A DFT Guide for Experiments[J]. ACS Catal, 2016,6(2):635-646. doi: 10.1021/acscatal.5b01918
Yang X, Nash J, Anibal J. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles[J]. J Am Chem Soc, 2018,140(41):13387-13391. doi: 10.1021/jacs.8b08379
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
A-C.N1s; D-F.C1s; G-I.V2p