Citation: LI Lin, REN Huimin, WEI Bohui, LI Jun, WANG Jie, LI Hui, YAO Chenzhong. V-N Co-doped Mesoporous Carbon Nanomaterials as Catalysts for Artificial N2 Reduction[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 930-938. doi: 10.11944/j.issn.1000-0518.2020.00.200037 shu

V-N Co-doped Mesoporous Carbon Nanomaterials as Catalysts for Artificial N2 Reduction

  • Corresponding author: YAO Chenzhong, E-mail:yaochzh1999@126.com
  • Received Date: 12 February 2020
    Revised Date: 13 March 2020
    Accepted Date: 13 April 2020

    Fund Project: the China Scholarship Fund, the Natural Science Foundation of Shanxi No.201903D121105the Foundation from Beijing Key Laboratory of Plastics Health and Safety Quality Evaluation Technology No.BS201709the Chemical Key Subject Construction Project of Yuncheng University 201701D221045the Foundation from the Key Laboratory of Coal Science and Technology from Taiyuan University of Technology No.MKX201904the National Natural Science Foundation of China No.51808485the National Natural Science Foundation of China No.U1810110the National Natural Science Foundation of China No.21576230the China Scholarship Fund, the Natural Science Foundation of Shanxi No.201701D211004the National Natural Science Foundation of China(No.U1810110, No.21576230, No.51808485), China Scholarship Fund, the Natural Science Foundation of Shanxi(No.201903D121105, No.201701D211004, No.201701D221045), the Chemical Key Subject Construction Project of Yuncheng University, the Foundation from Beijing Key Laboratory of Plastics Health and Safety Quality Evaluation Technology(No.BS201709), and the Foundation from the Key Laboratory of Coal Science and Technology from Taiyuan University of Technology(No.MKX201904)the China Scholarship Fund, the Natural Science Foundation of Shanxi No.201701D221045

Figures(8)

  • Compared with the Haber-Bosch process, electrochemical nitrogen fixation can directly convert N2 to NH3 under mild environmental conditions, which is the building block of fertilizer for agricultural production. However, the screening of nitrogen reduction electrocatalyst with high activity and high stability is the most important. Here, vanadium doped ZIF-8 was synthesized by the sol-gel method, and used as the precursor to prepare mesoporous carbon electrochemical N2 reduction reaction (NRR) catalysts at high temperature. The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, etc. The catalyst shows a highly disordered three-dimensional carbon structure. The presence of appropriate amount of V5+, nitrogen carbide and pyridine nitrogen in the catalyst can promote NRR significantly. In the 0.1 mol/L KOH electrolyte solution, with V doped amount of 1/8 and the applied potential of -0.4 V, the catalyst has the best NRR performance at the calcination temperature of 1100 ℃. The ammonia production rate can reach 7.092 mol/(cm2·h) and the Faraday efficiency (FE%) is 23.88%. Meanwhile, its current density has a slight fluctuation at -0.4 V for 18 h electrochemical reaction, further suggesting that V-N co-doped carbon based mesoporous nanomaterials has high durability.
  • 加载中
    1. [1]

      Gruber N, Galloway J N. An Earth-System Perspective of the Global Nitrogen Cycle[J]. Nature, 2008,451(7176):293-296. doi: 10.1038/nature06592

    2. [2]

      Erisman J W, Sutton M A, Galloway J. How a Century of Ammonia Synthesis Changed the World[J]. Nat Geosci, 2008,1(10):636-639. doi: 10.1038/ngeo325

    3. [3]

      Shi L, Li Q, Ling C. Metal-free Electrocatalyst for Reducing Nitrogen to Ammonia Using a Lewis Acid Pair[J]. J Mater Chem A, 2019,7(9):4865-4871. doi: 10.1039/C8TA11025E

    4. [4]

      Schlçgl R. Catalytic Synthesis of Ammonia-A "Never-ending Story"?[J]. Angew Chem Int Ed, 2003,42(18):2004-2008. doi: 10.1002/anie.200301553

    5. [5]

      Rosca V, Duca M, De Groot M T. Nitrogen Cycle Electrocatalysis[J]. Chem Rev, 2009,109(6):2209-2244. doi: 10.1021/cr8003696

    6. [6]

      Geng Z, Liu Y, Kong X, et al. Achieving a Record-High Yield Rate of 120.9μg NH3 mg-1 cat·h-1 for N2 Electrochemical Reduction over Ru Single-atom Catalysts[J]. Adv Mater, 2018, 30(40): 1803498(1-6).

    7. [7]

      Ren X, Cui G, Chen L. Electrochemical N2 Fixation to NH3 under Ambient Conditions:Mo2N Nanorod as a Highly Efficient and Selective Catalyst[J]. Chem Commun, 2018,54(61):8474-8477. doi: 10.1039/C8CC03627F

    8. [8]

      WANG Ya, YANG Yulu, CHU Yiyue. Research Progess of Electrocatalytic Nitrogen Reduction Catalysts[J]. Chem Res, 2019,30(5):532-536.  

    9. [9]

      Xu B, Liu Z, Qiu W. La2O3 Nanoplate:An Efficient Electrocatalyst for Atificial N2 Fixation to NH3 with Excellent Selectivity at Ambient Condition[J]. Electrochim Acta, 2019,298:106-111. doi: 10.1016/j.electacta.2018.12.084

    10. [10]

      Zhang L, Ji X Q, Ren X, et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies[J]. Adv Mater, 2018, 30(28): 1800191(1-6).

    11. [11]

      Xia L, Wu X, Wang Y, et al. S-doped Carbon Nanospheres: An Efficient Electrocatalyst Toward Artificial N2 Fixation to NH3[J]. Small Methods, 2019, 3(6): 1800251(1-5).

    12. [12]

      Chen S, Jang H, Wang J. Bimetallic Metal-organic Framework-derived MoFe-PC Microspheres for Electrocatalytic Ammonia Synthesis under Ambient Cnditions[J]. J Mater Chem A, 2020,8(4):2099-2104. doi: 10.1039/C9TA10524G

    13. [13]

      Han X Q, Lang Z L, Yan L K, et al. Atomic Nb Anchoring on Graphdiyne as a New Potential Electrocatalyst for Nitrogen Fixation: A Computational View[J]. Adv Theory Simul, 2019, 2(12): 1900132(1-7).

    14. [14]

      Kyriakou V, Garagounis I, Vasileiou E. Progress in the Electrochemical Synthesis of Ammonia[J]. Catal Today, 2016,286:2-13. doi: 10.1016/j.cattod.2016.06.014

    15. [15]

      Zhu D, Zhang L, Ruther R E. Photo-illuminated Diamond as a Solid-state Source of Solvated Electrons in Water for Nitrogen Reduction[J]. Nat Mater, 2013,12(6):836-841.  

    16. [16]

      Hu B, Hu M, Seefeldt L. Electrochemical Dinitrogen Reduction to Ammonia by Mo2N:Catalysis or Decomposition?[J]. ACS Energy Lett, 2019,4(5):1053-1054. doi: 10.1021/acsenergylett.9b00648

    17. [17]

      Zhang R, Zhang Y, Ren X. High-efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array[J]. ACS Sustainable Chem Eng, 2018,6(8):9545-9549. doi: 10.1021/acssuschemeng.8b01261

    18. [18]

      Wang L, Xia M, Wang H. Greening Ammonia Toward the Solar Ammonia Refinery[J]. Joule, 2018,2(6):1055-1074. doi: 10.1016/j.joule.2018.04.017

    19. [19]

      Zhang X, Liu Q, Shi X. TiO2 Nanoparticles-Reduced Graphene Oxide Hybrid:An Afficient and Durable Electrocatalyst toward Artificial N2 Fixation to NH3 under Ambient Conditions[J]. J Mater Chem A, 2018,6(36):17303-17306. doi: 10.1039/C8TA05627G

    20. [20]

      Zhang Y, Qiu W, Ma Y. High-performance Electrohydrogenation of N2 to NH3 Catalyzed by Multishelled Hollow Cr2O3 Microspheres under Ambient Conditions[J]. ACS Catal, 2018,8(9):8540-8544. doi: 10.1021/acscatal.8b02311

    21. [21]

      Han J, Liu Z, Ma Y. Ambient N2 Fixation to NH3 at Ambient Conditions:Using Nb2O5 Nanofiber as a High-performance Electrocatalyst[J]. Nano Energy, 2018,52:264-270. doi: 10.1016/j.nanoen.2018.07.045

    22. [22]

      Hu L, Khaniya A, Wang J. Ambient Electrochemical Ammonia Synthesis with High Selectivity on Fe/Fe Oxide Catalyst[J]. ACS Catal, 2018,8(10):9312-9319. doi: 10.1021/acscatal.8b02585

    23. [23]

      Zhao H, Zhang D, Wang Z, et al. High-Performance Nitrogen Electroreduction at Low Overpotential byIintroducing Pb to Pd Nanosponges[J]. Appl Catal B, 2020, 265: 118481.

    24. [24]

      Wu T, Kong W, Zhang Y. Greatly Enhanced Electrocatalytic N2 Reduction on TiO2 via V Doping[J]. Small Methods, 2019,3(11)1900356. doi: 10.1002/smtd.201900356

    25. [25]

      Cherkasov N, Ibhadon A O, Fitzpatrick P. A Review of the Existing and Alternative Methods for Greener Nitrogen Fixation[J]. Chem Eng Process, 2015,90:24-33. doi: 10.1016/j.cep.2015.02.004

    26. [26]

      CHEN Si, SUN Lizhen, SHU Xinxin. Graphene-Based Catalysts for Efficient Electrocatalysitc Application[J]. Chinese J Appl Chem, 2018,35(3):272-285.  

    27. [27]

      Tang C, Qiao S Z. How to Explore Ambient Electrocatalytic Nitrogen Reduction Reliably and Insightfully[J]. Chem Soc Rev, 2019,48(12):3166-3180. doi: 10.1039/C9CS00280D

    28. [28]

      Mukherjee S, Cullen D A, Karakalos S. Metal-Organic Framework-Derived Nitrogen-Doped Highly Disordered Carbon for Electrochemical Ammonia Synthesis Using N2 and H2O in Alkaline Electrolytes[J]. Nano Energy, 2018,48:217-226. doi: 10.1016/j.nanoen.2018.03.059

    29. [29]

      Feng J, Zhu X, Chen Q. Ultrasmall V8C7 Nanoparticles Embedded in Conductive Carbon for Efficient Electrocatalytic N2 Reduction toward Ambient NH3 Production[J]. J Mater Chem A, 2019,7(46):26227-26230. doi: 10.1039/C9TA09439C

    30. [30]

      Li S J, Bao D, Shi M M, et al. Amorphizing of Au Nanoparticles by CeOx RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions[J]. Adv Mater, 2017, 29(33): 1700001(1-6).

    31. [31]

      Chen S, Perathoner S, Ampelli C. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-nanotube-based Electrocatalyst[J]. Angew Chem Int Ed, 2017,56(10):2699-2703. doi: 10.1002/anie.201609533

    32. [32]

      Abghoui Y, Garden A L, Howalt J G. Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V:A DFT Guide for Experiments[J]. ACS Catal, 2016,6(2):635-646. doi: 10.1021/acscatal.5b01918

    33. [33]

      Yang X, Nash J, Anibal J. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles[J]. J Am Chem Soc, 2018,140(41):13387-13391. doi: 10.1021/jacs.8b08379

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(7)
  • Abstract views(1444)
  • HTML views(465)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return