Citation: WANG Qi, TONG Yuzhang, JIA Xiaopu, YANG Chun, WANG Qinglun, LIAO Daizheng. Syntheses, Crystal Structures and Magnetic Properties of a 2D Cobalt(Ⅱ) Metal-Organic Framework Based on N, N'-Bis-(3-Pyridyl) Terephthalamide and 1, 3, 5-Benzenetricarboxylic Acid[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1397-1405. doi: 10.11944/j.issn.1000-0518.2019.12.190125 shu

Syntheses, Crystal Structures and Magnetic Properties of a 2D Cobalt(Ⅱ) Metal-Organic Framework Based on N, N'-Bis-(3-Pyridyl) Terephthalamide and 1, 3, 5-Benzenetricarboxylic Acid

  • Corresponding author: YANG Chun, ychun@hebut.edu.cn WANG Qinglun, wangql@nankai.edu.cn
  • Received Date: 28 April 2019
    Revised Date: 29 May 2019
    Accepted Date: 9 July 2019

    Fund Project: the National Natural Science Foundation of China 21601092the Natural Science Foundation of Hebei Province B2016202280the Innovation and Entrepreneurship Training Program of Hebei Province for Undergraduate Students 201810080095Supported by the National Natural Science Foundation of China(No.21771111, No.21601092, No.21371104), the Natural Science Foundation of Hebei Province(No.B2016202280), and the Innovation and Entrepreneurship Training Program of Hebei Province for Undergraduate Students(No.201810080095)the National Natural Science Foundation of China 21371104the National Natural Science Foundation of China 21771111

Figures(7)

  • Based on N, N'-bis-(3-pyridyl)terephthalamide (3-bptpa) and 1, 3, 5-benzenetricarboxylic acid (1, 3, 5-H3btc), a Co(Ⅱ) metal-organic framework[Co(3-bptpa)(1, 3, 5-Hbtc)]·2H2O(1) with a 2D grid-like structure was hydrothermally synthesized. Complex 1 was characterized by X-ray crystallography, Fourier transform infrared (FT-IR) spectra, elemental analysis, thermal analysis and magnetic measurements. Each 1, 3, 5-Hbtc2- provided one chelating and one bridging carboxylate groups to coordinate to Co(Ⅱ) cations. The centrosymmetric dimer[Co(3-bptpa)(1, 3, 5-Hbtc)]2 was assembled into a 1D ladder-like chains by bridging carboxylate groups. The neighbouring chains were connected into 2D grid-like network by the coordination of 3-bptpa to Co(Ⅱ), resulting in the distorted CoN2O4 octahedral coordination sphere. The magnetic data of complex 1 in the temperature range 16~300 K were analyzed including the one-ion approximation for Co(Ⅱ) with spin-orbit coupling in Oh symmetry and intermolecular exchange interaction(zj') in the molecular field approximation leading to λ=-100.4 cm-1 and zj'=-0.618 cm-1.
  • 加载中
    1. [1]

      Li J R, Sculley J, Zhou H C. Metal Organic Frameworks for Separations[J]. Chem Rev, 2012,112(2):869-932.  

    2. [2]

      Duan J, Higuchi M, Krishna R. High CO2/N2/O2/CO Separation in a Chemically Robust Porous Coordination Polymer with Low Binding Energy[J]. Chem Sci, 2014,5:660-666. doi: 10.1039/C3SC52177J

    3. [3]

      Coronado E, Espallargas G M. Dynamic Magnetic MOFs[J]. Chem Soc Rev, 2013,42:1525-1539. doi: 10.1039/C2CS35278H

    4. [4]

      Zou J Y, Shi W, Xu N. A Homospin Cobalt(Ⅱ) Topological Ferrimagnet[J]. Chem Commun, 2013,49:8226-8228. doi: 10.1039/c3cc43642j

    5. [5]

      Jia X X, Yao R X, Zhang F Q. A Fluorescent Anionic MOF with Zn4(trz)2 Chain for Highly Selective Visual Sensing of Contaminants:Cr(Ⅲ) Ion and TNP[J]. Inorg Chem, 2017,56(5):2690-2696. doi: 10.1021/acs.inorgchem.6b02872

    6. [6]

      Zou J Y, Shi W, Gao H L. Spin Canting and Metamagnetism in 3D Pillared-Layer Homospin Cobalt(Ⅱ) Molecular Magnetic Materials Constructed via a Mixed Ligands Approach[J]. Inorg Chem Front, 2014,1:242-248. doi: 10.1039/c3qi00045a

    7. [7]

      Yin Z, Zhou Y L, Zeng M H. The Concept of Mixed Organic Ligands in Metal-Organic Frameworks:Design, Tuning and Functions[J]. Dalton Trans, 2015,44:5258-5275. doi: 10.1039/C4DT04030A

    8. [8]

      Zhao X, Bu X H, Zhai Q G. Pore Space Partition by Symmetry-Matching Regulated Ligand Insertion and Dramatic Tuning on Carbon Dioxide Uptake[J]. J Am Chem Soc, 2015,137(4):1396-1399. doi: 10.1021/ja512137t

    9. [9]

      Feng Y Y, Liu X Y, Duan L Q. In-Situ Synthesized 3D Heterometallic Metal-Organic Framework(MOF) as High-Energy-Density Materials Shows High Heat of Detonation, Good Thermostability and Insensitivity[J]. Dalton Trans, 2015,44:2333-2339. doi: 10.1039/C4DT03131H

    10. [10]

      Liu G C, Yu H X, Lin H Y. Spacers-Induced Structural Diversity of Cobalt Coordination Polymers Based on "V"-type Dipyridylamide and Dicarboxylic Ligands:Fluorescent, Magnetic and Photocatalytic Properties[J]. Polyhedron, 2017,126:205-213. doi: 10.1016/j.poly.2017.01.022

    11. [11]

      Hsu Y F, Lin C H, Chen J D. A Novel Interpenetrating Diamondoid Network from Self-assembly of N, N'-Di(4-pyridyl)adipoamide and Copper Sulfate:An Unusual 12-Fold, [6+6] Mode[J]. Cryst Growth Des, 2008,8(4):1094-1096. doi: 10.1021/cg701209k

    12. [12]

      Cheng P C, Kuo P T, Liao Y H. Ligand-Isomerism Controlled Structural Diversity of Zn(Ⅱ) and Cd(Ⅱ) Coordination Polymers from Mixed Dipyridyladipoamide and Benzenedicarboxylate Ligands[J]. Cryst Growth Des, 2013,13(2):623-632.

    13. [13]

      Wang X L, Luan J, Sui F F. Structural Diversities, Fluorescent and Photocatalytic Properties of a Series of Cu Coordination Polymers Constructed from Flexible Bis-pyridyl-Bis-amide Ligands with Different Spacer Length and Different Aromatic Carboxylates[J]. Cryst Growth Des, 2013,13(8):3561-3576. doi: 10.1021/cg400538c

    14. [14]

      Wang X L, Sui F F, Lin H Y. Aromatic Polycarboxylate-Tuned Assembly of Three New 2D Copper(Ⅱ) Complexes Derived from a Flexible Bis(pyridylamide) Ligand[J]. Aust J Chem, 2013,66(1):67-74. doi: 10.1071/CH12357

    15. [15]

      Wang X L, Xiong Y, Sha X T. Various Polycarboxylate-Directed Cd(Ⅱ) Coordination Polymers Based on a Semirigid Bis-pyridyl-Bis-amide Ligand:Construction and Fluorescent and Photocatalytic Properties[J]. Cryst Growth Des, 2017,17(2):483-496.  

    16. [16]

      Dybtsev D N, Chun H, Kim K. Rigid and Flexible:A Highly Porous Metal Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew Chem Int Ed, 2004,43(38):5033-5036. doi: 10.1002/anie.200460712

    17. [17]

      Liu W, Peng Y Y, Wu S G. Guest-Switchable Multi-Step Spin Transitions in an Amine-Functionalized Metal-Organic Framework[J]. Angew Chem Int Ed, 2017,129(47):15178-15182. doi: 10.1002/ange.201708973

    18. [18]

      Shi L, Shao D, Wei H Y. Two Interpenetrated Cobalt(Ⅱ) Metal-Organic Frameworks with Guest-Dependent Structures and Field-Induced Single-Ion Magnet Behaviors[J]. Cryst Growth Des, 2018,18(9):5270-5278. doi: 10.1021/acs.cgd.8b00714

    19. [19]

      Wang Y L, Chen L, Liu C M. Field-Induced Slow Magnetic Relaxation and Gas Adsorption Properties of a Bifunctional Cobalt(Ⅱ) Compound[J]. Inorg Chem, 2015,54(23):11362-11368. doi: 10.1021/acs.inorgchem.5b02324

    20. [20]

      Vallejo J, Fortea-Pérez F R, Pardo E. Guest-Dependent Single-Ion Magnet Behaviour in a Cobalt(Ⅱ) Metal Organic Framework[J]. Chem Sci, 2016,7:2286-2293. doi: 10.1039/C5SC04461H

    21. [21]

      Gupta K, Dadwal A, Rana S. Metamagnetism in Nanosheets of Co-MOF with TN at 26 K and a Giant Hysteretic Effect at 5 K[J]. Inorg Chem, 2018,57(24):15044-15047. doi: 10.1021/acs.inorgchem.8b03064

    22. [22]

      Lim K S, Lee W R, Lee H G. Control of Interchain Antiferromagnetic Coupling in Porous Co(Ⅱ)-Based Metal-Organic Frameworks by Tuning the Aromatic Linker Length:How Far Does Magnetic Interaction Propagate?[J]. Inorg Chem, 2017,56(13):7443-7448. doi: 10.1021/acs.inorgchem.7b00899

    23. [23]

      Tian C B, Han Y H, He Z Z. Magnetic Tuning of an Anionic Co-MOF through Deionization of the Framework:Spin-Canting, Spin-Flop, and Easy-Plane Magnetic Anisotropy[J]. Chem Eur J, 2017,23(4):767-772. doi: 10.1002/chem.201604809

    24. [24]

      Qin Z, Jennings M C, Puddephatt R J. Self-assembly in Palladium(Ⅱ) and Platinum(Ⅱ) Chemistry:The Biomimetic Approach[J]. Inorg Chem, 2003,42(6):1956-1965. doi: 10.1021/ic020322z

    25. [25]

      Wang X L, Luan J, Lin H Y. The Various Architectures and Properties of a Series of Coordination Polymers Tuned by the Central Metals[J]. Dalton Trans, 2014,43:8072-8082. doi: 10.1039/c4dt00064a

    26. [26]

      Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution[CP]. University of Gö ttingen. Germany, 1997.

    27. [27]

      Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures[CP]. University of Göttingen. Germany, 1997.

    28. [28]

      Li M X, Zhang Y F, He X. Diverse Structures and Ferro-/Ferri-/Antiferromagnetic Interactions of Pyridyltetrazole Coordination Polymers with Polycarboxylate Auxiliary Ligands[J]. Cryst Growth Des, 2016,16(5):2912-2922. doi: 10.1021/acs.cgd.6b00258

    29. [29]

      Wang X L, Mu B, Lin H Y. Substituent Groups from Aromatic Dicarboxylates Modulated Structural Diversification in the Assembly of Co(Ⅱ) Complexes Based on the Bis-pyridyl-Bis-amide Ligands[J]. Sci China Chem, 2013,56(5):557-566. doi: 10.1007/s11426-012-4784-6

    30. [30]

      Gangu K K, Maddila S, Mukkamala S B. A 3D Supramolecular Assembly of Co(Ⅱ) MOF Constructed with 2, 5-Pyridinedicarboxylate Strut and Its Catalytic Activity towards Synthesis of Tetrahydrobiphenylene-1, 3-Dicarbonitriles[J]. Inorg Chim Acta, 2018,482:830-837. doi: 10.1016/j.ica.2018.07.030

    31. [31]

      YUN Jixing, HU Zhili, LI Yumeng. Synthesis, Structure and Photoelectric Property of a Series of Ni(Ⅱ) Complexes Constructed Through Aromatic Carboxylic Ligands[J]. Chem J Chinese Univ, 2018,39(10):2161-2169. doi: 10.7503/cjcu20180076

    32. [32]

      Deacon G B, Phillips R J. Relationships Between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination[J]. Coord Chem Rev, 1980,33(3):227-250. doi: 10.1016/S0010-8545(00)80455-5

    33. [33]

      Yang G P, Wang Y Y, Ma L F. Hydrothermal Syntheses and Characterizations of Three Coordination Polymers Based on Mixed Organic Ligands[J]. Eur J Inorg Chem, 2007,24:3892-3898.  

    34. [34]

      Wang R, Zhang J, Li L. Conformation Preference of a Flexible Cyclohexanetetracarboxylate Ligand in Three New Metal-Organic Frameworks:Structures, Magnetic and Luminescent Properties[J]. Inorg Chem, 2009,48(15):7194-7200. doi: 10.1021/ic900390y

    35. [35]

      Zeng M H, Tan Y X, He Y P. A Porous 4Fold-Interpenetrated Chiral Framework Exhibiting Vapochromism, Single-Crystal-to-Single-Crystal Solvent Exchange, Gas Sorption, and a Poisoning Effect[J]. Inorg Chem, 2013,52(5):2353-2360. doi: 10.1021/ic301857h

    36. [36]

      Wang X L, Wu X M, Liu G C. Four Thiophene-Pyridyl-Amide-Based Zn/Cd Coordination Polymers:Assembly, Structures, Photocatalytic Properties and Fluorescent Recognition for Fe3+[J]. J Solid State Chem, 2017,249:51-57. doi: 10.1016/j.jssc.2017.02.018

    37. [37]

      Batool S S, Gilani S R, Tahir M N. Synthesis, and Structural Characterization of Mixed Ligand Copper(Ⅱ) Complexes of N, N, N', N'-Tetramethylethylenediamine Incorporating Carboxylates[J]. J Mol Struct, 2017,1148:7-14. doi: 10.1016/j.molstruc.2017.07.014

    38. [38]

      Yang C, Wang Q L, Tang G T. Synthesis, Crystal Structure, Spectroscopy and Magnetism of a Mixed Valence Co(Ⅲ)-Co(Ⅱ)-Co(Ⅲ) Complex Stabilized by N-(2-Hydroxybenzyl)salicylaldimine[J]. J Coord Chem, 2010,63(3):505-514. doi: 10.1080/00958970903509277

    39. [39]

      Fabelo O, Pasán J, Canadillas-Delgado L. Cobalt(Ⅱ) Sheet-Like Systems Based on Diacetic Ligands:From Subtle Structural Variances to Different Magnetic Behaviors[J]. Inorg Chem, 2009,48(13):6086-6095. doi: 10.1021/ic9004483

    40. [40]

      Jia H P, Li W, Ju Z F. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers[J]. Eur J Inorg Chem, 2006,21:4264-4270.  

    41. [41]

      Rueff J M, Masciocchi N, Rabu P. Synthesis, Structure and Magnetism of Homologous Series of Polycrystalline Cobalt Alkane Mono- and Dicarboxylate Soaps[J]. Chem Eur J, 2002,8(8):1813-1820. doi: 10.1002/1521-3765(20020415)8:8<1813::AID-CHEM1813>3.0.CO;2-G

    42. [42]

      Li L, Zou J Y, You S Y. Assembly of a New (3, 6)-Connected Cobalt(Ⅱ) Metal-Organic Framework via a Mixed Ligands Approach[J]. Polyhedron, 2018,141:262-266. doi: 10.1016/j.poly.2017.11.049

    43. [43]

      Fabelo O, Canñadillas-Delgado L, Pasán J. Study of the Influence of the Bridge on the Magnetic Coupling in Cobalt(Ⅱ) Complexes[J]. Inorg Chem, 2009,48(23):11342-11351. doi: 10.1021/ic901843r

    44. [44]

      Masuhara N, Hayami S, Motokawa N. Crystal Structure and Magnetic Property of Two Novel 1-D Cobalt(Ⅱ) Assemblies[J]. Chem Lett, 2007,36(1):90-91.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(5)
  • Abstract views(665)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return