Citation: ZHOU Fengzhen, LI Wenqiu, WANG Wenjing, GUO Huiling. Influencing Factors of Lanthanum Adsorption by Ca-Montmorillonite and Its Application[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1413-1421. doi: 10.11944/j.issn.1000-0518.2019.12.190077 shu

Influencing Factors of Lanthanum Adsorption by Ca-Montmorillonite and Its Application

  • Corresponding author: GUO Huiling, 405530371@qq.com
  • Received Date: 22 March 2019
    Revised Date: 3 June 2019
    Accepted Date: 3 July 2019

    Fund Project: the National Natural Science Foundation of China 21401051Supported by the National Natural Science Foundation of China (No. 21401051) and the Natural Science Foundation of Hubei Province (No. 2014CFB595)the Natural Science Foundation of Hubei Province 2014CFB595

Figures(6)

  • The adsorption of lanthanum on Ca-montmorillonite was studied. The crystal structure, surface morphology, specific surface area and chemical structure of Ca-montmorillonite were characterized by XRD, SEM, BET, Fourier transform infrared spectrum (FT-IR) and X-Ray fluorescence (XRF). The effects of initial lanthanum concentration, pH and adsorption temperature on the adsorption of La onto Ca-montmorillonite were examined when the mass concentration of Ca-montmorillonite was 10 g/L. The phosphorus removal effect of Ca-MMT@La was studied. The results showed that the adsorption of La onto Ca-montmorillonite increases with initial lanthanum concentration increasing, and the maximum adsorption capacity is 49.62 mg/g. With the increase of the pH of lanthanum-containing solution, the adsorption capacity increases and the optimum adsorption is obtained at initial pH 6 with the adsorption capacity of 38.36 mg/g. With the increase of temperature, the adsorption capacity increases firstly and then decreases. The maximum adsorption capacity of lanthanum is 41.23 mg/g at 20℃. The adsorption equilibrium was best described by the Langmuir isotherm model. The result indicated that La is adsorbed onto Ca-montmorillonite through the monolayer adsorption. Ca-montmorillonite can not adsorb phosphorus. However, Ca-MMT@La has a strong adsorption capacity for phosphate with the adsorption capacity of 7.24 mg/g and the phosphorus removal rate of 72.41%. The adsorption of phosphorus onto Ca-MMT@La increases with the increase of loaded lanthanum content.
  • 加载中
    1. [1]

      Das D, Varshini J S C, DAS N. Recovery of Lanthanum(Ⅲ) from Aqueous Solution Using Biosorbents of Plant and Animal Origin:Batch and Column Studies[J]. Miner Eng, 2014,69:40-56. doi: 10.1016/j.mineng.2014.06.013

    2. [2]

      Awwad N S, Gad H M H, Ahmad M I. Sorption of Lanthanum and Erbium from Aqueous Solution by Activated Carbon Prepared from Rice Husk[J]. Colloids Surf B, 2010,81(2):593-599.  

    3. [3]

      Tadjarodi A, Jalalat V, Zare-Dorabei R. Adsorption of La(Ⅲ) in Aqueous Systems by N-(2-Hydroxyethyl) Salicylaldimine-Functionalized Mesoporous Silica[J]. Mater Res Bull, 2015,61:113-119. doi: 10.1016/j.materresbull.2014.09.036

    4. [4]

      Jacinto J, Henriques B, Duarte A C. Removal and Recovery of Critical Rare Elements from Contaminated Waters by Living Gracilaria gracilis[J]. J Hazard Mater, 2018,344:531-538. doi: 10.1016/j.jhazmat.2017.10.054

    5. [5]

      Wang Y Y, Lu H H, Liu Y X. Ammonium Citrate-Modified Biochar:An Adsorbent for La(Ⅲ) Ions from Aqueous Solution[J]. Colloids Surf A, 2016,509:550-563. doi: 10.1016/j.colsurfa.2016.09.060

    6. [6]

      Chen J D, Luo W J, Guo A F. Preparation of a Novel Carboxylate-Rich Palygorskite as an Adsorbent for Ce3+ from Aqueous Solution[J]. J Colloid Interface Sci, 2018,512:657-664. doi: 10.1016/j.jcis.2017.09.107

    7. [7]

      Li X J, Zhang X, Yang H. Atomic-Layered Mn Clusters Deposited on Palygorskite as Powerful Adsorbent for Recovering Valuable Rees from Wastewater with Superior Regeneration Stability[J]. J Colloid Interface Sci, 2018,509:395-405. doi: 10.1016/j.jcis.2017.09.041

    8. [8]

      Ponoua J, Wang L P, Dodbiba G. Recovery of Rare Earth Elements from Aqueous Solution Obtained from Vietnamese Clay Minerals Using Dried and Carbonized Parachlorella[J]. J Environ Chem Eng, 2014,2:1070-1081. doi: 10.1016/j.jece.2014.04.002

    9. [9]

      Sadovsky D, Brenner A, Astrachan B. Biosorption Potential of Cerium Ions Using Spirulina Biomass[J]. J Rare Earths, 2016,34(6):644-652. doi: 10.1016/S1002-0721(16)60074-1

    10. [10]

      Zhao Z Y, Sun X Q, Dong Y M. Synergistic Effect of Doped Functionalized Ionic Liquids in Silica Hybrid Material for Rare Earth Adsorption[J]. Ind Eng Chem Res, 2016,55(7):2221-2229. doi: 10.1021/acs.iecr.5b04742

    11. [11]

      Iftekhar S, Farooq M U, Sillanpaa M. Removal of Ni(Ⅱ) Using Multi-walled Carbon Nanotubes Electrodes:Relation Between Operating Parameters and Capacitive Deionization Performance[J]. Arab J Sci Eng, 2017,42:235-240. doi: 10.1007/s13369-016-2301-5

    12. [12]

      Gao S, Luo T T, Zhou Q. A Novel and Efficient Method on the Recovery of Nanosized CeO2 in Ce3+ Wastewater Remediation Using Modified Sawdust as Adsorbent[J]. J Colloid Interface Sci, 2018,512:629-637. doi: 10.1016/j.jcis.2017.09.032

    13. [13]

      Diniz V, Volesky B. Biosorption of La, Eu and Yb Using Sargassum Biomass[J]. Water Res, 2005,39:239-247. doi: 10.1016/j.watres.2004.09.009

    14. [14]

      Wu D B, Sun Y H, Wan Q G. Adsorption of Lanthanum(Ⅲ) from Aqueous Solution Using 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester-Grafted Magnetic Silica Nanocomposites[J]. J Hazard Mater, 2013,260:409-419. doi: 10.1016/j.jhazmat.2013.05.042

    15. [15]

      Rahman M M, Khan S B, Marwani H M. SnO2-TiO2 Nanocomposites as New Adsorbent for Efficient Removal of La(Ⅲ) Ions from Aqueous Solutions[J]. J Taiwan Inst Chem Eng, 2014,45(4):1964-1974. doi: 10.1016/j.jtice.2014.03.018

    16. [16]

      Koochaki-Mohammadpour S M A, Torab-Mostaedi M, Talebizadeh-Rafsanjani A. Adsorption Isotherm, Kinetic, Thermodynamic, and Desorption Studies of Lanthanum and Dysprosium on Oxidized Multiwalled Carbon Nanotubes[J]. J Dispersion Sci Technol, 2014,35:244-254. doi: 10.1080/01932691.2013.785361

    17. [17]

      Anastopoulos I, Bhatnagar A, Lima E C. Adsorption of Rare Earth Metals:A Review of Recent Literature[J]. J Mol Liq, 2016,221:954-962. doi: 10.1016/j.molliq.2016.06.076

    18. [18]

      Iannicelli-Zubiani E M, Cristiani C, Dotelli G. Use of Natural Clays as Sorbent Materials for Rare Earth Ions:Materials Characterization and Set Up of the Operative Parameters[J]. Waste Manage, 2015.  

    19. [19]

      Zhu R L, Chen Q Z, Zhou Q. Adsorbents Based on Montmorillonite for Contaminant Removal from Water:A Review[J]. Appl Clay Sci, 2016,123:239-258. doi: 10.1016/j.clay.2015.12.024

    20. [20]

      Nagy K, Biro G, Berkesi O. Intercalation of Lecithins for Preparation of Layered Nanohybrid Materials and Adsorption of Limonene[J]. Appl Clay Sci, 2013,72:155-162. doi: 10.1016/j.clay.2012.11.008

    21. [21]

      Cottet L, Almeida C A P, Naidek N. Adsorption Characteristics of Montmorillonite Clay Modified with Iron Oxide with Respect to Methylene Blue in Aqueous Media[J]. Appl Clay Sci, 2014,95:25-31. doi: 10.1016/j.clay.2014.03.023

    22. [22]

      Zhou C H, Keeling J. Fundamental and Applied Research on Clay Minerals:From Climate and Environment to Nanotechnology[J]. Appl Clay Sci, 2013,74:3-9. doi: 10.1016/j.clay.2013.02.013

    23. [23]

      Nones Janaina, Riella H G, Trentin A G. Effects of Bentonite on Different Cell Types:A Brief Review[J]. Appl Clay Sci, 2015,105:225-230.  

    24. [24]

      Chen Q. Study on The Adsorption of Lanthanum(Ⅲ) from Aqueous Solution by Bamboo Charcoal[J]. J Rare Earths, 2010,28:125-131. doi: 10.1016/S1002-0721(10)60272-4

    25. [25]

      Rahman M L, Biswas T K, Sarkar S M. Adsorption of Rare Earth Metals from Water Using a Kenaf Cellulose-Based Poly(Hydroxamic Acid) Ligand[J]. J Mol Liq, 2017,243:616-623. doi: 10.1016/j.molliq.2017.08.096

    26. [26]

      Ramasamy D L, Khan S, Repo E. Synthesis of Mesoporous and Microporous Amine and Non-Amine Functionalized Silica Gels for the Application of Rare Earth Elements(REE) Recovery from the Waste Water-Understanding the Role of pH, Temperature, Calcination and Mechanism in Light REE and Heavy REE[J]. Chem Eng J, 2017,322:56-65. doi: 10.1016/j.cej.2017.03.152

    27. [27]

      De Castro L F, Brandao V S, Bertolino L C. Phosphate Adsorption by Montmorillonites Modified with Lanthanum/Iron and a Laboratory Test Using Water from the Jacarepagu Lagoon(RJ, Brazil)[J]. J Braz Chem Soc, 2019,30(3):641-657.

    28. [28]

      WANG Min. Spectrophotometric Determination of Lanthanum in Catalysts with Arsenazo(Ⅲ)[J]. Chinese J Spectrosc Lab, 2014,21(2):390-392.  

    29. [29]

      WANG Lihua, YI Xiaodong. Preparation and Performance of Nanosized La2O3[J]. J Fujian Norm Univ(Nat Sci Ed), 2012,28(4):60-63.  

    30. [30]

      Thagira B H, Karthikeyan P, Meenakshi S. Lanthanum(Ⅲ) Encapsulated Chitosan-Montmorillonite Composite for the Adsorptive Removal of Phosphate Ions from Aqueous Solution[J]. Int J Biol Macromol, 2018,112:284-293. doi: 10.1016/j.ijbiomac.2018.01.138

    31. [31]

      WAN Dong, WANG Guanghua, LI Wenbing. Preparation and Characterization of Supported Fe3O4 Nanoparticles with Different Modified Bentonite[J]. Ind Safe Environ Prot, 2014,9(40):27-29.  

    32. [32]

      LI Wenbing, ZHANG Yujia, ZHANG Xiu. Nano-Magnetic Modified Bentonite:Preparation and Its Degradation of Methyl Orange[J]. J Wuhan Univ Sci Technol, 2014,35(3):202-206.  

    33. [33]

      LI Wenbing, LI HaiJian, WAN Dong. Synthesis and Characterization of Pillared Bentonite Supported Fe3O4 Magnetic Nanoparticles Composite Material[J]. Environ Eng, 2014,32(11):77-81.  

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(3)
  • Abstract views(465)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return