Citation: DENG Junfei, DU Weimin, WANG Mengyao, WEI Qinghe. Synthesis and the Electrochemical Energy Storage of Porous Biomass Carbon from Corn Stalk[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1323-1332. doi: 10.11944/j.issn.1000-0518.2019.11.190102 shu

Synthesis and the Electrochemical Energy Storage of Porous Biomass Carbon from Corn Stalk

  • Corresponding author: DU Weimin, dwmchem@163.com
  • Received Date: 15 April 2019
    Revised Date: 24 June 2019
    Accepted Date: 11 July 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.U1404203), the Program for Innovative Research Team of Science and Technology in the University of Henan Province(No.16IRTSTHN003), and the Special Projects of New Energy Vehicle Development of Anyang City(No.2017-480-15)the Special Projects of New Energy Vehicle Development of Anyang City 2017-480-15the National Natural Science Foundation of China U1404203the Program for Innovative Research Team of Science and Technology in the University of Henan Province 16IRTSTHN003

Figures(7)

  • Porous biomass carbon with high specific surface area(2167 m2/g) was prepared from corn stalk. By optimizing the experimental conditions, porous biomass carbon material with the best performance can be obtained with specific capacitance of 390 F/g at a current density of 1 A/g. More importantly, liquid-phase symmetric supercapacitors were assembled with the optimal porous biomass carbon as the electrode material and 3 mol/L KOH solution as the electrolyte. The present symmetrical supercapacitors have an energy density of 7 Wh/kg at the power density of 818 W/kg, and 91.1% capacitance retention after 10000 cycles. Meanwhile, after charged, two such supercapacitors in series can easily illuminate 15 LED lights and drive the small fans to work normally. These results indicate that porous biomass carbon from corn stalks has great practical significance as an advanced electrode material for supercapacitors.
  • 加载中
    1. [1]

      Noori A, El-Kady M F, Rahmanifar M S. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond[J]. Chem Soc Rev, 2019,48(5):1272-1341. doi: 10.1039/C8CS00581H

    2. [2]

      Deb Nath N C, Jeon I Y, Ju M J. Edge-carboxylated Graphene Nanoplatelets as Efficient Electrode Materials for Eelectrochemical Supercapacitors[J]. Carbon, 2019,142(28):89-98.  

    3. [3]

      Cheng X Y, Liu C Z. Enhanced Coproduction of Hydrogen and Methane from Cornstalks by a Three-Stage Anaerobic Fermentation Process Integrated with Alkaline Hydrolysis[J]. Bioresource Technol, 2012,104(1):373-379.  

    4. [4]

      Zhu H, Wang X, Yang F. Promising Carbons for Supercapacitors Derived from Fungi[J]. Adv Mater, 2011,23(24):2745-2748. doi: 10.1002/adma.201100901

    5. [5]

      Jiang H, Yang L, Li C. High-Rate Electrochemical Capacitors from Highly Graphitic Carbon-Tipped Manganese Oxide/Mesoporous Carbon/Manganese Oxide Hybrid Nanowires[J]. Energ Environ Sci, 2011,4(5):1813-1819. doi: 10.1039/c1ee01032h

    6. [6]

      Liu C, Yu Z, Neff D. Graphene-based Supercapacitor with an Ultrahigh Energy Density[J]. Nano Lett, 2010,10(12):4863-4868. doi: 10.1021/nl102661q

    7. [7]

      Ma T Y, Liu L, Yuan Z Y. Direct Synthesis of Ordered Mesoporous Carbons[J]. Chem Soc Rev, 2013,42(9):3977-4003. doi: 10.1039/C2CS35301F

    8. [8]

      Huang J, Liang Y, Hu H. Ultrahigh-surface-area Hierarchical Porous Carbon from Chitosan:Acetic Acid Mediated Efficient Synthesis and Its Application in Superior Supercapacitors[J]. J Mater Chem A, 2017,5(47):24775-24781. doi: 10.1039/C7TA08046H

    9. [9]

      Zhu G, Ma L, Lv H. Pine Needle-derived Microporous Nitrogen-Doped Carbon Frameworks Exhibit High Performances in Electrocatalytic Hydrogen Evolution Reaction and Supercapacitors[J]. Nanoscale, 2017,9(3):1237-1243. doi: 10.1039/C6NR08139H

    10. [10]

      Qu G, Jia S, Wang H. Asymmetric Supercapacitor Based on Porous N-Doped Carbon Derived from Pomelo Peel and NiO Arrays[J]. ACS Appl Mater Interfaces, 2016,8(32):20822-20830. doi: 10.1021/acsami.6b06630

    11. [11]

      Fabičovicová K, Malter O, Lucas M. Hydrogenolysis of Cellulose to Valuable Chemicals over Activated Carbon Supported Mono-and Bimetallic Nickel/Tungsten Catalysts[J]. Green Chem, 2014,16(7):3580-3588. doi: 10.1039/C4GC00664J

    12. [12]

      Alonso D M, Wettstein S G, Dumesic J A. Bimetallic Catalysts for Upgrading of Biomass to Fuels and Chemicals[J]. Chem Soc Rev, 2012,41(24):8075-8098. doi: 10.1039/c2cs35188a

    13. [13]

      Pan C M, Ma H C, Fan Y T. Bioaugmented Cellulosic Hydrogen Production from Cornstalk by Integrating Dilute Acid-Enzyme Hydrolysis and Dark Fermentation[J]. Int J Hydrogen Energy, 2011,36(8):4852-4862. doi: 10.1016/j.ijhydene.2011.01.114

    14. [14]

      Cao G L, Guo W Q, Wang A J. Enhanced Cellulosic Hydrogen Production from Lime-treated Cornstalk Wastes Using Thermophilic Anaerobic Microflora[J]. Int J Hydrogen Energy, 2012,37(17):13161-13166. doi: 10.1016/j.ijhydene.2012.03.137

    15. [15]

      Resch G, Held A, Faber T. Potentials and Prospects for Renewable Energies at Global Scale[J]. Energy Policy, 2008,36(11):4048-4056. doi: 10.1016/j.enpol.2008.06.029

    16. [16]

      Jain A, Balasubramanian R, Srinivasan M P. Tuning Hydrochar Properties for Enhanced Mesopore Development in Activated Carbon by Hydrothermal Carbonization[J]. Micropor Mesopor Mat, 2015,203(3):178-185.  

    17. [17]

      Wang L, Tian C, Wang B. Controllable Synthesis of Graphitic Carbon Nanostructures from Ion-Exchange Resin-Iron Complex via Solid-State Pyrolysis process[J]. Chem Commun, 2008,42(42):5411-5413.  

    18. [18]

      Wang L, Tian C, Wang H. Mass Production of Graphene via an in situ Self-generating Template Route and Its Promoted Activity as Electrocatalytic Support for Methanol Electroxidization[J]. J Phys Chem C, 2010,114(19):8727-8733. doi: 10.1021/jp911292p

    19. [19]

      Wang B, Tian C, Zheng C. A Simple and Large-Scale Strategy for the Preparation of Ag Nanoparticles Supported on Resin-Derived Carbon and Their Antibacterial Properties[J]. Nanotechnology, 2009,20(2):025603-025607. doi: 10.1088/0957-4484/20/2/025603

    20. [20]

      Yu H, Zhang W, Li T. Capacitive Performance of Porous Carbon Nanosheets Derived from Biomass Cornstalk[J]. RSC Adv, 2017,7(2):1067-1074. doi: 10.1039/C6RA25899A

    21. [21]

      Zhou Y J, Luner P, Caluwe P. Mechanism of Crosslinking of Papers with Polyfunctional Carboxylic Acids[J]. J Appl Polym Sci, 1995,58(9):1523-1534. doi: 10.1002/app.1995.070580915

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    16. [16]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

Metrics
  • PDF Downloads(6)
  • Abstract views(1008)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return