Citation: LI Jing, WU Haibo, WANG Yu, YANG Huamei, SONG Ming, DU Xihua, ZHANG Yongcai. Preparation and Enhanced Visible-Light Photocatalytic Activity of Bismuth Tungstate/Graphitic Carbon Nitride Composite Modified by Bi2WO6 Quantum Dots and Nanosheets[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1275-1285. doi: 10.11944/j.issn.1000-0518.2019.11.190046 shu

Preparation and Enhanced Visible-Light Photocatalytic Activity of Bismuth Tungstate/Graphitic Carbon Nitride Composite Modified by Bi2WO6 Quantum Dots and Nanosheets

  • Corresponding author: LI Jing, lijingxz111@163.com ZHANG Yongcai, zhangyc@yzu.edu.cn
  • Received Date: 21 February 2019
    Revised Date: 15 May 2019
    Accepted Date: 25 June 2019

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20171169Supported by the National Natural Science Foundation of China(No.21703194), the Natural Science Foundation of Jiangsu Province(No.BK20171168, No.BK20171169), the Major Program of Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJA430015), and the Excellent Young Teachers of "Blue Project" in Jiangsu Province(2018)the Natural Science Foundation of Jiangsu Province BK20171168the National Natural Science Foundation of China 21703194the Major Program of Natural Science Foundation of the Jiangsu Higher Education Institutions of China 18KJA430015

Figures(9)

  • Bismuth tungstate/graphitic carbon nitride (Bi2WO6/g-C3N4) composite photocatalyst modified by Bi2WO6 quantum dots and nanosheets was prepared through ultrasonic-hydrothermal method using sodium oleate as auxiliary reagent. The compositions, structures and light absorption properties of Bi2WO6/g-C3N4 were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), Brunauer-Emmett-Teller (BET) and other techniques. The mechanism of synthetic reaction was proposed. Photocatalytic reduction of aqueous rhodamine B (RhB) was employed to assess the visible light photocatalytic activity of Bi2WO6/g-C3N4. Electrochemical impedance spectroscopy (EIS) and photocurrent characteriations demonstated that Bi2WO6/g-C3N4 with the heterogeneous interface separated the photo-generated electron-hole paris effectively. Hence, a rapid RhB degradation by Bi2WO6/g-C3N4-30(the number 30 represents the mass fraction(%) of g-C3N4) under visible light irradiation was achieved at 95.8% in 120 min. The results confirmed that the photogenerated holes were main active specie in the photodegradation process. Moreover, the relationship of heterogenrous interface and photocatalytic performance was investigated, and involved photocatalytic mechanism was revealed.
  • 加载中
    1. [1]

      Wang Y, Zhang Y, Zhao S. Bio-template Synthesis of Mo-Doped Polymer Carbon Nitride for Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ, 2019,248:44-53.  

    2. [2]

      LI Jinge, CHEN Fen, LAN Fujun. Foam-Like Graphitic Carbon Nitride:Synthesis and Visible-Light-Driven Photocatalytic Activity for Hydrogen Evolution[J]. Chinese J Appl Chem, 2019,36(1):65-74.  

    3. [3]

      WANG Danjun, SHEN Huidong, FU Mengxi. Construction of Bi2WO6 Quantu Dots(QDs) Decorated Bi2MoO6-xF2x Heterostructures with Enchanced Photocatalytic Activity[J]. Chinese J Inorg Chem, 2018,34(1):73-82.  

    4. [4]

      Xia D, Wang W, Yin R. Enhanced Photocatalytic Inactivation of Escherichia Coli by a Novel Z-Scheme g-C3N4/m-Bi2O4 Hybrid Photocatalyst under Visible Light:The Role of Reactive Oxygen Species[J]. Appl Catal B:Environ, 2017,214:23-33.

    5. [5]

      Qiu F, Li W, Wang F. In-Situ Synthesis of Novel Z-Scheme SnS2/BiOBr Photocatalysts with Superior Photocatalytic Efficiency under Visible Light[J]. J Colloid Interface Sci, 2017,493:1-9.  

    6. [6]

      Liu C, Wu Q, Ji M. Constructing Z-scheme Charge Separation in 2D Layered Porous BiOBr/Graphitic C3N4 Nanosheets Nanojunction with Enhanced Photocatalytic Activity[J]. J Alloy Compd, 2017,723:1121-131.  

    7. [7]

      CHEN Shijie, TANG Xiaojun, CHEN Qian. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6[J]. Chinese J Appl Chem, 2017,34(8):936-945.  

    8. [8]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(5358):37-38.  

    9. [9]

      Shi X, Fujitsuka M, Lou Z. In Situ Nitrogen-Doped Hollow-TiO2/g-C3N4 Composite Photocatalyst with Efficient Charge Separation Boosting Water Reduction under Visible Light[J]. J Mater Chem A, 2017,5(20):1-26.  

    10. [10]

      He Y, Zhang L, Fan M. Z-scheme SnO2-x/g-C3N4 Composite as an Efficient Photocatalyst for Dye Degradation and Photocatalytic CO2 Reduction[J]. Sol Energy Mater Sol Cells, 2015,137:175-184.  

    11. [11]

      Li H, Liu J, Hou W. Synthesis and Characterization of g-C3N4/Bi2MoO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activity[J]. Appl Catal B:Environ, 2014,160/161:89-97.  

    12. [12]

      Zhang Z, Huang J, Zhang M. Ultrathin Hexagonal SnS2 Nanosheets Coupled with g-C3N4 Nanosheetsas 2D/2D Heterojunction Photocatalysts Toward High Photocatalytic Activity[J]. Appl Catal B:Environ, 2015,163:298-305.

    13. [13]

      Jiao Y, Huang Q, Wang J. A Novel MoS2 Quantum Dots(QDs) Decorated Z-Scheme g-C3N4 Nanosheet/N-Doped Carbon Dots Heterostructure Photocatalyst for Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ, 2019,247:124-132.  

    14. [14]

      Yan Q, Huang G F, Li D F. Facile Synthesis and Superior Photocatalytic and Electrocatalytic Performances of Porous B-Doped g-C3N4 Nanosheets[J]. J Mater Sci Technol, 2018,34(12):2515-2520.  

    15. [15]

      Bai X, Wang L, Wang Y. Enhanced Oxidation Ability of g-C3N4 Photocatalyst via C60 Modification[J]. Appl Catal B:Environ, 2014,152/153:262-270.  

    16. [16]

      Li Y, Jin R, Fang X. In situ Loading of Ag2WO4 on Ultrathin g-C3N4 Nanosheets with Highly Enhaned Photocatalytic Performance[J]. J Hazard Mater, 2016,313:219-228.

    17. [17]

      Jiang D, Chen L, Zhu J. Novel p-n Heterojunction Photocatalyst Constructed by Porous Graphite-Like C3N4 and Nanostructured BiOI:Facile Synthesis and Enhanced Photocatalytic[J]. Dalton Trans, 2013,42(44):15726-15734.  

    18. [18]

      Xing C, Wu Z, Jiang D. Hydrothermal Synthesis of In2S3/g-C3N4 Heterojunctions with Enhanced Photocatalytic Activity[J]. J Colloid Interface Sci, 2014,433(12):9-15.  

    19. [19]

      Zhang Q, Hu S, Fan Z. Preparation of g-C3N4/ZnMoCdS Hybrid Heterojunction Catalyst with Outstanding Nitrogen Photofixation Performance under Visible Light via Hydrothermal Post-treatment[J]. Dalton Trans, 2016,45:3497-3505.  

    20. [20]

      Li M, Zhang L, Wu M. Mesostructured CeO2/g-C3N4 Nanocomposites:Remarkably Enhanced Photocatalytic Activity for CO2 Reduction by Mutual Component Activations[J]. Nano Energy, 2016,19:145-155.

    21. [21]

      Tian Y, Chang B, Lu J. Hydrothermal Synthesis of Graphitic Carbon Nitride Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities[J]. ACS Appl Mater Interfaces, 2013,5(15):7079-7085.  

    22. [22]

      He R A, Cao S W, Zhou P. Recent Advances in Visible Light Bi-Based Photocatalysts[J]. Chinese J Catal, 2014,35(11):989-1007.

    23. [23]

      Sun Z, Guo J, Zhu S. A High-performance Bi2WO6-graphene Photocatalyst for Visible Light-induced H2 and O2 Generation[J]. Nanoscale, 2014,6(4):2186-2193.  

    24. [24]

      Zhu C, Liu Y, Cao H, et al. Insight into the Influence of Morphology of Bi2WO6 for Photocatalytic Degradation of VOCs under Visible Light[J]. Colloid Surf A, 2019, 13, In Press, Accepted Manuscript.

    25. [25]

      Li C, Chen G, Sun J. A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production[J]. ACS Appl Mater Interfaces, 2015,7(46):25716-25724.  

    26. [26]

      Liao Y B, Wang J X, Lin J S. Synthesis, Photocatalytic Activities and Degradation Mechanism of Bi2WO6 Toward Crystal Violet Dye[J]. Catal Today, 2011,174:148-159.  

    27. [27]

      Wang C, Zhang H, Li F. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation[J]. Environ Sci Technol, 2010,44(17):6843-6848.  

    28. [28]

      Wang H, Lu J, Wang F. Preparation, Characterization and Photocatalytic Performance of g-C3N4/Bi2WO6 Composites for Methyl Orange Degradation[J]. Ceram Int, 2014,40:9077-9086.  

    29. [29]

      Liu L, Qi Y, Lu J. Dramatic Activity of a Bi2WO6@g-C3N4 Photocatalyst with a Core@Shell Structure[J]. RSC Adv, 2015,5:99339-99346.  

    30. [30]

      Xiao X, Wei J, Yang Y. Photoreactivity and Mechanism of g-C3N4 and Ag Co-modified Bi2WO6 Microsphere under Visible Light Irradiation[J]. ACS Sustainable Chem Eng, 2016,4(6):2017-3023.  

    31. [31]

      Wei H, Zhang Q, Zhang Y. Enhancement of the Cr(Ⅵ) Adsorption and Photocatalytic Reduction Activity of g-C3N4 by Hydrothermal Treatment in HNO3 Aqueous Solution[J]. Appl Catal A Gen, 2016,521:9-18.

    32. [32]

      Sun S M, Wang W Z, Jiang D. Bi2WO6 Quantum Dot-Intercalated Ultrathin Montmo-Rillonite Nanostructure and Its Enhanced Photocatalytic Performance[J]. Nano Res, 2014,7:1497-1506.

    33. [33]

      Chen W, Liu T Y, Huang T. In-situ Fabrication of a Novel Z-Scheme Bi2WO6 Quantum Dots/g-C3N4 Ultrathin Nanosheets Heterostructures with Improved Photocatalytic Activity[J]. Appl Surf Sci, 2015,355:379-387.  

    34. [34]

      Cao J, Qin C, Wang Y. Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application[J]. Nanomaterials, 2017,7(98):1-13.  

    35. [35]

      SUN Linin, ZHOU Yehong, WANG Fei. Adsorption Properties of Carboxymethyl-β-cyclodextrin Functionalized Ferroferric Oxide Magnetic Nonocomposites on Rhodamine B[J]. Chinese J Appl Chem, 2015,32(1):111-117.  

    36. [36]

      Lee M S, Park S S, Lee G D. Synthesis of TiO2 Particles by Reverse Microemulsion Method Using Nonionic Surfactants with Different Hydrophilic and Hydrophobic Group and Their Photocatalytic Activity[J]. Catal Today, 2005,101:283-290.  

    37. [37]

      Ilias P, Nadia T, Tatiana G. Photocatalytic Activity of Modified g-C3N4/TiO2 Nanocomposites for NOx Removal[J]. Catal Today, 2017,280:37-44.  

    38. [38]

      Ji H, Fan Y, Yan J. Construction of SnO2/Graphene-Like g-C3N4 with Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv, 2017,7:36101-36111.  

    39. [39]

      Che H, Liu C, Hu W. NGQD ActiveSites as Effective Collectors of Charge Carriers for Improving the Photocatalytic Performance of Z-Scheme g-C3N4/Bi2WO6 Heterojunctions[J]. Catal Sci Technol, 2018,8:622-631.

    40. [40]

      Hao R, Wang G, Tang H. Template-free Preparation of Macro/mesoporous g-C3N4/TiO2 Heterojunction Photocatalysts with Enhanced Visible Light Photocatalytic Activity[J]. Appl Catal B:Environ, 2016,187:47-58.  

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(8)
  • Abstract views(1977)
  • HTML views(378)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return