Citation: WANG Youhao, LI Fashe, WANG Wenchao, CHEN Yu. Effects of Light Wavelengths on Oxidative Stability of Biodiesel[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1301-1307. doi: 10.11944/j.issn.1000-0518.2019.11.190041 shu

Effects of Light Wavelengths on Oxidative Stability of Biodiesel

  • Corresponding author: LI Fashe, asan97@qq.com
  • Received Date: 18 February 2019
    Revised Date: 25 April 2019
    Accepted Date: 29 May 2019

    Fund Project: the National Natural Science Foundation of China 51766007the Natural Science Foundation of Yunnan Province 2018FB092Supported by the National Natural Science Foundation of China(No.51766007), and the Natural Science Foundation of Yunnan Province(No.2018FB092)

Figures(5)

  • In order to study the effect of light on the oxidation stability of biodiesel, the jatropha biodiesel was treated with light in different wavelengths at 20℃ for 48 hours. The treated samples were then analyzed for oxidative stability. The results showed that light promoted the oxidation of biodiesel. The short-wavelength light represented by violet light had the strongest promoting effect on the oxidation of jatropha oil biodiesel. The induction period decreased from 5.12 h to 2.65 h in 48%; the red light with longer wavelength has the weakest promoting effect on the oxidation of biodiesel, and the induction period is reduced to 4.61 h, which is reduced in 10%. The acid value titration, composition analysis and UV characterization of light-treated biodiesel with different wavelengths showed that the acid value of biodiesel increased from 0.2577 mg/g to 0.3438 mg/g as the wavelength of light decreased. The relative content of methyl linoleate in the carbon-carbon double bond decreases; the absorption peak of the conjugated double bond increases. This shows that the shorter the wavelength of light, the stronger the promotion toward biodiesel oxidation.
  • 加载中
    1. [1]

      LI Changzhu, ZHANG Liangbo, OU Riming. Research on Biodiesel Development Strategy[J]. Hunan Forest Sci Technol, 2005,32(6):6-8. doi: 10.3969/j.issn.1003-5710.2005.06.002

    2. [2]

      SUN Shangde, WANG Xingguo, SHAN Liang. Progress in Research and Development of Biodiesel[J]. Grain Oil, 2007(4):8-13. doi: 10.3969/j.issn.1008-9578.2007.04.002

    3. [3]

      Zhang Y, Dubé M A, Mclean D D. Biodiesel Production from Waste Cooking Oil:1.Process Design and Technological Assessment[J]. Bioresour Technol, 2003,89(1):1-16. doi: 10.1016/S0960-8524(03)00040-3

    4. [4]

      LI Fashe, BAO Guirong, WANG Hua. Research Progress in Oxidation Stability of Biodiesel[J]. China Oils Fats, 2009,34(2):1-5. doi: 10.3321/j.issn:1003-7969.2009.02.001

    5. [5]

      Liang Y C, May C Y, Foon C S. The Effect of Natural and Synthetic Antioxidants on the Oxidative Stability of Biodiesel[J]. Fuel, 2006,85(5/6):867-870.  

    6. [6]

      Ebiura T, Echizen T, Ishikawa A. Selective Transesterification of Triolein with Methanol to Methyl Oleate and Glycerol Using Alumina Loaded with Alkali Metal Salt as a Solid-Base Catalyst[J]. Appl Catal A, 2005,283(1/2):111-116.  

    7. [7]

      Knothe G, Steidley K R. The Effect of Metals and Metal Oxides on Biodiesel Oxidative Stability from Promotion to Inhibition[J]. Fuel Process Technol, 2018,177:75-80. doi: 10.1016/j.fuproc.2018.04.009

    8. [8]

      Shen J, Li F, Li Z. Numerical Investigation of Air-Staged Combustion to Reduce NOX Emissions from Biodiesel Combustion in Industrial Furnaces[J]. J Energy Inst, 2019,92(3):704-716. doi: 10.1016/j.joei.2018.03.002

    9. [9]

      LIU Zuowen, LI Fashe, SHEN Jiaxu. Characteristics of Jatropha Biodiesel During Oxidation[J]. J Chinese Cereals Oils Assoc, 2018,33(5):66-69, 81. doi: 10.3969/j.issn.1003-0174.2018.05.011

    10. [10]

      LI Fashe. Preparation of Jatropha Biodiesel by Supercritical Two-Step Method and Its Antioxidation and Low Temperature Resistance[D]. Kunming University of Science and Technology, 2011(in Chinese). 

    11. [11]

      SU Youyong, ZHANG Wudi, GE Zhenyang. Preparation of Biodiesel by Cyclic Gas Phase Esterification-Transesterification-Steam Distillation[J]. J Kunming Univ Sci Technol(Nat Sci), 2006,31(5):87-91. doi: 10.3969/j.issn.1007-855X.2006.05.019

    12. [12]

      LI Fashe, NI Zihao, DU Wei. Study on the Composition Analysis of Biodiesel Before and after Oxidation[J]. China Oils Fats, 2015,40(1):64-68.  

    13. [13]

      ZHANG Mingcheng. Introduction of Oil Oxidation Mechanism and Antioxidant Measures[J]. Agric Machine, 2011(8):49-52.  

    14. [14]

      ZHOU Shengqiang. The Main Cause of Oxidative Rancidity of Oil—Photooxidation[J]. Sichuan Cereals Oils Technol, 2003(2):28-30.  

    15. [15]

      QIAN Weiguang. Mechanism of Photooxidation of Oils and Resistance to Photooxidation of Rosemary[J]. Sichuan Cereals Oils Technol, 2000(1):25-26.  

    16. [16]

      ZHANG Yuquan. Study on the Mechanism of Color Reversion During Storage of Vegetable Oil[D]. Jiangnan University, 2015(in Chinese). 

    17. [17]

      CAO Wenming, XUE Bin, YUAN Chao. Research Progress on the Oxidative Rancidity of Oils and Fats[J]. Cereals & Oils, 2013,26(3):1-5. doi: 10.3969/j.issn.1008-9578.2013.03.003

    18. [18]

      XU Huihui. Study on Oxidation Stability of Biodiesel[D]. Zhengzhou: Zhengzhou University, 2010(in Chinese). 

    19. [19]

      REN Yiming, TANG Dingxing, DING Chunmei. Discussion on Common Mistakes in Applying Woodward-Fieser Rules[J]. Chinese J Chem Educ, 2011,32(3):65-66.  

    20. [20]

      Kanga Y. A Balanced Linear Equation of the Extended Woodward UV Rules for All Types of α, β-Unsaturated Ketones[J]. Tetrahedron Lett, 2012,53(15):1928-1932. doi: 10.1016/j.tetlet.2012.02.004

    21. [21]

      Kang Y, Kang F A. A Linear Mathematical Relationship Hidden in the Woodward UV Rules for α, β-Unsaturated Ketones[J]. Tetrahedron Lett, 2011,52(50):6679-6681. doi: 10.1016/j.tetlet.2011.10.010

    22. [22]

      CHEN Deheng. Organic Structure Analysis[M]. Beijing:Science Press, 1985(in Chinese).

    23. [23]

      HUANG Liang, YU Dequan. Application of Ultraviolet Spectroscopy in Organic Chemistry. Volume 1[M]. Beijing:Science Press, 1988(in Chinese).

    24. [24]

      WU Jiang, CHEN Boshui, FANG Jianhua. Infrared and Ultraviolet Spectrum Analysis of Biodiesel Before and after Oxidation[J]. Acta Pet Sin(Pet Process Sect), 2014(2):262-265. doi: 10.3969/j.issn.1001-8719.2014.02.011

    25. [25]

      WU Jiang, CHEN Boshui, FANG Jianhua. Study on Oxidation Mechanism of Jatropha Oil Biodiesel Based on Spectral Analysis[J]. Renew Energy, 2013,31(12):107-110. doi: 10.3969/j.issn.1671-5292.2013.12.023

  • 加载中
    1. [1]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    14. [14]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    15. [15]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(3)
  • Abstract views(1027)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return