Citation: MENG Fanzhi, ZHAO Zhongfu, LIU Wei, ZHANG Chunqing, CHEN Ping, BAI Zhenmin, SHI Yue. Preparation, Structures and Properties of High-Performance Hydrogenated Star-Shaped Poly(styrene-b-butadiene-b-styrene) Copolymer-Based Anion Exchange Membrane[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1135-1146. doi: 10.11944/j.issn.1000-0518.2019.10.190068 shu

Preparation, Structures and Properties of High-Performance Hydrogenated Star-Shaped Poly(styrene-b-butadiene-b-styrene) Copolymer-Based Anion Exchange Membrane

  • Corresponding author: ZHAO Zhongfu, zfzhao@dlut.edu.cn ZHANG Chunqing, zhangchq@dlut.edu.cn
  • Received Date: 18 March 2019
    Revised Date: 9 April 2019
    Accepted Date: 8 May 2019

    Fund Project: the National Natural Science Foundation of China 51073029the National Natural Science Foundation of China 51877029the National Natural Science Foundation of China 51673034Supported by the National Natural Science Foundation of China(No.51673034, No.51877029, No.51073029)

Figures(7)

  • Hydrogenated star-shaped poly(styrene-b-butadiene-b-styrene) copolymer(HSBS) was synthesized by catalytic hydrogenation at atmospheric pressure. The product was treated by sequential chloromethylation, quaternization and alkalization to fabricate two kinds of alkaline anion exchange membranes(AEMs) with good comprehensive properties. And they were HSBS4303-OH and HSBS4402-OH(the mass fraction of styrene in the raw materials were 30% and 40%, respectively). The structures and preparation process of AEMs were characterized by Fourier transform infrared(FTIR) spectroscopy. The ionic conductivity, water absorption, swelling, mechanical properties, microphase structure and alkaline resistance of the membranes were systematically studied. The results show that the characteristic melting peak corresponding to the crystalline structure of the HSBS occured at about 90℃ and its mechanical properties and size stability were significantly improved compared with parent SBS. In particular, HSBS4402-OH has superior performance. Its ion exchange capacity(IEC), water absorption and swelling degree at 30℃ were 1.99 mmol/g, 27.65% and 5.12%, respectively. Its ionic conductivity achieved 86.8 mS/cm at 80℃. And the loss of its ionic conductivity was only 8.3% even as the membrane was immersed in 2 mol/L NaOH solution for 432 h at 60℃. Apparently, this method can produce promising AEMs for anion exchange membrane fuel cells.
  • 加载中
    1. [1]

      Tanaka M, Fukasawa K, Nishino E. Anion Conductive Block Poly(arylene ether)s:Synthesis, Properties, and Application in Alkaline Fuel Cells[J]. J Am Chem Soc, 2011,133(27):10646-10654. doi: 10.1021/ja204166e

    2. [2]

      Gottesfeld S, Dekel D R, Page M. Anion Exchange Membrane Fuel Cells:Current Status and Remaining Challenges[J]. J Power Sources, 2018,375:170-184. doi: 10.1016/j.jpowsour.2017.08.010

    3. [3]

      Kamarudin M Z F, Kamarudin S K, Masdar M S. Review:Direct Ethanol Fuel Cells[J]. Int J Hydrogen Energy, 2013,38(22):9438-9453. doi: 10.1016/j.ijhydene.2012.07.059

    4. [4]

      Yang Z, Guo R, Malpass-Evans R. Highly Conductive Anion-Exchange Membranes from Microporous Troger's Base Polymers[J]. Angew Chem Int Ed, 2016,55(38):11499-11502. doi: 10.1002/anie.201605916

    5. [5]

      Yuan Z Z, Li X F, Zhao Y Y. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery[J]. ACS Appl Mater Interfaces, 2015,7(34):19446-19454. doi: 10.1021/acsami.5b05840

    6. [6]

      Akiyama R, Yokota N, Nishino E. Anion Conductive Aromatic Copolymers from Dimethylaminomethylated Monomers:Synthesis, Properties, and Applications in Alkaline Fuel Cells[J]. Macromolecules, 2016,49(12):4480-4489. doi: 10.1021/acs.macromol.6b00408

    7. [7]

      Thomas O D, Soo K J W Y, Peckham T J. A Stable Hydroxide-Conducting Polymer[J]. J Am Chem Soc, 2012,134(26):10753-10756. doi: 10.1021/ja303067t

    8. [8]

      Jie C, He G, Zhang F. A Mini-review on Anion Exchange Membranes for Fuel Cell Applications:Stability Issue and Addressing Strategies[J]. Int J Hydrogen Energy, 2015,40(23):7348-7360. doi: 10.1016/j.ijhydene.2015.04.040

    9. [9]

      Hugar K M, Kostalik H A, Coates G W. Imidazolium Cations with Exceptional Alkaline Stability:A Systematic Study of Structure-Stability Relationships[J]. J Am Chem Soc, 2015,137(27):8730-8737. doi: 10.1021/jacs.5b02879

    10. [10]

      Mohanty A D, Tignor S E, Krause J A. Systematic Alkaline Stability Study of Polymer Backbones for Anion Exchange Membrane Applications[J]. Macromolecules, 2016,49(9):3361-3372. doi: 10.1021/acs.macromol.5b02550

    11. [11]

      Mohanty A D, Tignor S E, Sturgeon M R. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells[J]. J Electrochem Soc, 2017,164(13):F1279-F1285. doi: 10.1149/2.0141713jes

    12. [12]

      Nunez S A, Capparelli C, Hickner M A. N-Alkyl Interstitial Spacers and Terminal Pendants Influence the Alkaline Stability of Tetraalkylammonium Cations for Anion Exchange Membrane Fuel Cells[J]. Chem Mater, 2016,28(8):2589-2598. doi: 10.1021/acs.chemmater.5b04767

    13. [13]

      Dang H S, Jannasch P. Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes[J]. Macromolecules, 2015,48(16):5742-5751. doi: 10.1021/acs.macromol.5b01302

    14. [14]

      Li N, Zhang Q, Wang C. Phenyltrimethylammonium Functionalized Polysulfone Anion Exchange Membranes[J]. Macromolecules, 2012,45(5):2411-2419. doi: 10.1021/ma202681z

    15. [15]

      Danks T N, Slade R C T, Varcoe J R. Alkaline Anion-Exchange Radiation-Grafted Membranes for Possible Electrochemical Application in Fuel Cells[J]. J Mater Chem, 2003,13(4):712-721. doi: 10.1039/b212164f

    16. [16]

      Zhang H W, Chen D Z, Xianze Y. Anion-Exchange Membranes for Fuel Cells:Synthesis Strategies, Properties and Perspectives[J]. Fuel Cells, 2015,15(6):761-780. doi: 10.1002/fuce.201500039

    17. [17]

      Zhu L, Pan J, Christensen C M. Functionalization of Poly(2, 6-dimethyl-1, 4-phenylene oxide)s with Hindered Fluorene Side Chains for Anion Exchange Membranes[J]. Macromolecules, 2016,49(9):3300-3309. doi: 10.1021/acs.macromol.6b00578

    18. [18]

      He S, Lei L, Wang X. Azide-assisted Self-Crosslinking of Highly Ion Conductive Anion Exchange Membranes[J]. J Membr Sci, 2016,509:48-56. doi: 10.1016/j.memsci.2016.02.045

    19. [19]

      Zhu L, Yu X, Hickner M A. Exploring Backbone-Cation Alkyl Spacers for Multi-Cation Side Chain Anion Exchange Membranes[J]. J Power Sources, 2018,375:433-441. doi: 10.1016/j.jpowsour.2017.06.020

    20. [20]

      Lee W H, Mohanty A D, Bae C. Fluorene-Based Hydroxide Ion Conducting Polymers for Chemically Stable Anion Exchange Membrane Fuel Cells[J]. ACS Macro Lett, 2015,4(4):453-457. doi: 10.1021/acsmacrolett.5b00145

    21. [21]

      Guo D, Lai A N, Lin C X. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells[J]. ACS Appl Mater Interfaces, 2016,8(38):25279-25288. doi: 10.1021/acsami.6b07711

    22. [22]

      Chen W, Yan X, Wu X. Tri-quaternized Poly(ether sulfone) Anion Exchange Membranes with Improved Hydroxide Conductivity[J]. J Membr Sci, 2016,514:613-621. doi: 10.1016/j.memsci.2016.05.004

    23. [23]

      Cao M T, Kim D. Anion-Exchange Membranes Based on Poly(arylene ether ketone) with Pendant Quaternary Ammonium Groups for Alkaline Fuel Cell Application[J]. J Membr Sci, 2016,511:143-150. doi: 10.1016/j.memsci.2016.03.059

    24. [24]

      Manohar M, Thakur A K, Pandey R P. Efficient and Stable Anion Exchange Membrane:Tuned Membrane Permeability and Charge Density for Molecular/Ionic Separation[J]. J Membr Sci, 2015,496:250-258. doi: 10.1016/j.memsci.2015.08.051

    25. [25]

      Zhang M, Shan C R, Liu L. Facilitating Anion Transport In-Polyolefin-Based Anion Exchange Membranes via Bulky Side Chains[J]. ACS Appl Mater Interfaces, 2016,8(35):23321-23330. doi: 10.1021/acsami.6b06426

    26. [26]

      Li Y F, Liu Y, Savage A M. Polyethylene-Based Block Copolymers for Anion Exchange Membranes[J]. Macromolecules, 2015,48(18):6523-6533. doi: 10.1021/acs.macromol.5b01457

    27. [27]

      Zhu M, Su Y, Wu Y. Synthesis and Properties of Quaternized Polyolefins with Bulky Poly(4-phenyl-1-butene) Moieties as Anion Exchange Membranes[J]. J Membr Sci, 2017,541:244-252. doi: 10.1016/j.memsci.2017.06.042

    28. [28]

      Zeng Q H, Liu Q L, Broadwell I. Anion Exchange Membranes Based on Quaternized Polystyrene-Block-Poly(ethylene-ran-butylene)-Block-Polystyrene for Direct Methanol Alkaline Fuel Cells[J]. J Membr Sci, 2010,349(1/2):237-243.  

    29. [29]

      Vinodh R, Ilakkiya A, Elamathi S. A Novel Anion Exchange Membrane from Polystyrene(Ethylene Butylene) Polystyrene:Synthesis and Characterization[J]. Mater Sci Eng B, 2010,167(1):43-50. doi: 10.1016/j.mseb.2010.01.025

    30. [30]

      Ertem S P, Tsai T H, Donahue M M. Photo-Cross-Linked Anion Exchange Membranes with Improved Water Management and Conductivity[J]. Macromolecules, 2016,49(1):153-161. doi: 10.1021/acs.macromol.5b01784

    31. [31]

      Arges C G, Ramani V. Two-Dimensional NMR Spectroscopy Reveals Cation-Triggered Backbone Degradation in Polysulfone-Based Anion Exchange Membranes[J]. Proc Natl Acad Sci, 2013,110(7):2490-2495. doi: 10.1073/pnas.1217215110

    32. [32]

      Nunez S A, Hickner M A. Quantitative 1H-NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes[J]. ACS Macro Lett, 2013,2(1):49-52. doi: 10.1021/mz300486h

    33. [33]

      Jeong U, Lee H H, Yang L H. Kinetics and Mechanism, of Morphological Transition from Lamella to Cylinder Microdomain in Polystyrene-Block-Poly(ethylene-co-but-1-ene) Block-Polystyrene Triblock Copolymer[J]. Macromolecules, 2003,36(5):1685-1693. doi: 10.1021/ma021376v

    34. [34]

      Han X, Hu J, Liu H L. SEBS Aggregate Patterning at a Surface Studied by Atomic Force Microscopy[J]. Langmuir, 2006,22(7):3428-3433. doi: 10.1021/la051293i

    35. [35]

      Wang D, Fujinami S, Liu H. Investigation of True Surface Morphology and Nanomechanical Properties of Poly(styrene-b-ethylene-co-butylene-b-styrene) Using Nanomechanical Mapping:Effects of Composition[J]. Macromolecules, 2010,43(21):9049-9055. doi: 10.1021/ma100959v

    36. [36]

      Zhou J, Guo J, Chu D. Impacts of Anion-Exchange-Membranes with Various Ionic Exchange Capacities on the Performance of H2/O2 Fuel Cells[J]. J Power Sources, 2012,219:272-279. doi: 10.1016/j.jpowsour.2012.07.051

    37. [37]

      Sun L, Guo J S, Zhou J. Novel Nanostructured High-Performance Anion Exchange Ionomers for Anion Exchange Membrane Fuel Cells[J]. J Power Sources, 2012,202:70-77. doi: 10.1016/j.jpowsour.2011.11.023

    38. [38]

      Zeng Q H, Liu Q L, Broadwell I. Anion Exchange Membranes Based on Quaternized Polystyrene-Block-Poly(ethylene-ran-butylene)-Block-Polystyrene for Direct Methanol Alkaline Fuel Cells[J]. J Membr Sci, 2010,349(1/2):237-243.  

    39. [39]

      Vinodh R, Ilakkiya A, Elamathi S. A Novel Anion Exchange Membrane from Polystyrene(ethylene butylene) Polystyrene:Synthesis and Characterization[J]. Mater Sci Eng B-Adv, 2010,167(1):43-50.

    40. [40]

      Mohanty A D, Ryu C Y, Kim Y S. Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers[J]. Macromolecules, 2015,48(19):7085-7095. doi: 10.1021/acs.macromol.5b01382

    41. [41]

      Lin C X, Wang X Q, Hu E N. Quaternized Triblock Polymer Anion Exchange Membranes with Enhanced Alkaline Stability[J]. J Membr Sci, 2017,541:358-366. doi: 10.1016/j.memsci.2017.07.032

    42. [42]

      Dai P, Mo Z H, Xu R W. Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane:Synthesis, Characterization and Properties[J]. ACS Appl Mater Interfaces, 2016,8(31):20329-20341. doi: 10.1021/acsami.6b04590

    43. [43]

      Hao J, Gao X, Jiang Y. Crosslinked High-Performance Anion Exchange Membranes Based on Poly(styrene-b-(ethylene-co-butylene)-b-styrene)[J]. J Membr Sci, 2018,551:66-75. doi: 10.1016/j.memsci.2018.01.033

    44. [44]

      Bacskai R. Copolymerization of α-Olefins with ω-Halo-α-olefins by Use of Ziegler Catalysts[J]. J Polym Sci Part A:Gen Pap, 1965,3(7):2491-2510. doi: 10.1002/pol.1965.100030708

    45. [45]

      Zhang M, Liu J L, Wang Y G. Highly Stable Anion Exchange Membranes Based on Quaternized Polypropylene[J]. J Mater Chem A, 2015,3(23):12284-12296. doi: 10.1039/C5TA01420D

    46. [46]

      Zhang M, Shan C R, Liu L. Facilitating Anion Transport in-Polyolefin-Based Anion Exchange Membranes via Bulky Side Chains[J]. ACS Appl Mater Interfaces, 2016,8(35):23321-23330.  

    47. [47]

      Clark T J, Robertson N J, Kostalik H A. A Ring-Opening Metathesis Polymerization Route to Alkaline Anion Exchange Membranes:Development of Hydroxide-Conducting Thin Films from an Ammonium-Functionalized Monomer[J]. J Am Chem Soc, 2009,131(36):12888-12889. doi: 10.1021/ja905242r

    48. [48]

      Robertson N J, Kostalik H A, Clark T J. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications[J]. J Am Chem Soc, 2010,132(10):3400-3404. doi: 10.1021/ja908638d

    49. [49]

      Noonan K J T, Hugar K M, Kostalik H A. Phosphonium-Functionalized Polyethylene:A New Class of Base-Stable Alkaline Anion Exchange Membranes[J]. J Am Chem Soc, 2012,134(44):18161-18164. doi: 10.1021/ja307466s

    50. [50]

      Sherazi T A, Sohn J Y, Lee Y M. Polyethylene-Based Radiation Grafted Anion-Exchange Membranes for Alkaline Fuel Cells[J]. J Membr Sci, 2013,441:148-157. doi: 10.1016/j.memsci.2013.03.053

    51. [51]

      Lin F, Wu C J, Cui D M. Synthesis and Characterization of Crystalline Styrene-b-(Ethylene-co-Butylene)-b-Styrene Triblock Copolymers[J]. J Polym Sci Pol Chem, 2017,55(7):1243-1249. doi: 10.1002/pola.28489

    52. [52]

      Mango L A, Lenz R W. Hydrogenation of Unsaturated Polymers with Diimide[J]. Macromol Chem Phys, 1973,163(1):13-36.  

    53. [53]

      Faraj M, Elia E, Boccia M. New Anion Conducting Membranes Based on Functionalized Styrene-Butadiene-Styrene Triblock Copolymer for Fuel Cells Applications[J]. J Polym Sci Polym Chem, 2011,49(15):3437-3447. doi: 10.1002/pola.24781

    54. [54]

      Enming W, Li Q, Haiyan D U. Preparation of Anion-Exchange Membranes of SBS-TMA Type by Click Chemistry Method and Their Performance[J]. Chem Ind Eng Prog, 2018,37(1):230-235.  

    55. [55]

      Buonerba A, Speranza V, Grassi A. Novel Synthetic Strategy for the Sulfonation of Polybutadiene and Styrene Butadiene Copolymers[J]. Macromolecules, 2013,46(3):778-784. doi: 10.1021/ma301972m

    56. [56]

      Vengatesan S, Santhi S, Jeevanantham S. Quaternized Poly(styrene-co-vinylbenzyl chloride) Anion Exchange Membranes for Alkaline Water Electrolysers[J]. J Power Sources, 2015,284:361-368. doi: 10.1016/j.jpowsour.2015.02.118

    57. [57]

      Pan J F, Ding J C, Zheng Y. One-Pot Approach to Prepare Internally Cross-Linked Monovalent Selective Anion Exchange Membranes[J]. Membr Sci, 2018,553:43-53. doi: 10.1016/j.memsci.2018.02.035

    58. [58]

      Hossain M M, Wu L, Liang X. Anion Exchange Membrane Crosslinked in the Easiest Way Stands Out for Fuel Cells[J]. J Power Sources, 2018,390:234-241. doi: 10.1016/j.jpowsour.2018.04.064

    59. [59]

      Lin C X, Wu H Y, Li L. Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain[J]. ACS Appl Mater Interfaces, 2018,10(21):18327-18337. doi: 10.1021/acsami.8b03757

    60. [60]

      Yang Q, Lin C X, Liu F H. Poly(2, 6-dimethyl-1, 4-phenylene oxide)/Ionic Liquid Functionalized Graphene Oxide Anion Exchange Membranes for Fuel Cells[J]. J Membr Sci, 2018,552:367-376. doi: 10.1016/j.memsci.2018.02.036

  • 加载中
    1. [1]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    8. [8]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(4)
  • Abstract views(1003)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return