Citation: YAN Li, LI Zhuorui, HAN Guozhi. Research Progress on Controlled Release Technology for Insect Pheromones[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1099-1108. doi: 10.11944/j.issn.1000-0518.2019.10.190057 shu

Research Progress on Controlled Release Technology for Insect Pheromones

  • Corresponding author: HAN Guozhi, han@njtech.edu.cn
  • Received Date: 4 March 2019
    Revised Date: 4 July 2019
    Accepted Date: 5 July 2019

    Fund Project: the "Fudi Yingcai" Innovation Program of Jurong, Jiangsu 2016the "Jinshan Yingcai" Leading Talent Program of Zhejiang, Jiangsu 2017Supported by the "Jinshan Yingcai" Leading Talent Program of Zhejiang, Jiangsu(2017), and the "Fudi Yingcai" Innovation Program of Jurong, Jiangsu(2016)

Figures(14)

  • Pheromones as a class of chemicals that are released from insects in vitro to regulate or induce the behavior and response of other individuals. In recent years, usage of pheromones as a replacement for pesticides against harmful insects has become a new technology for integrated pest management. Compared with traditional pesticide control methods, pheromones have some important ecological advantages such as high specificity, non-resistance, low toxicity and harmless to beneficial organisms. Furthermore, pheromones are generally susceptible to degradation accompanied with high volatility. Therefore, pheromone-based controlled release technology has attracted extensive interests of scientific community and is a new interdisciplinary subject covering chemistry, materials and agriculture. Controlled or sustained release of insect pheromones through a specific method or technology can effectively control pests, reduce the use of pesticides and improve the level of environmental ecology. At the same time, the controlled release technology can also reduce the total amount of regional chemicals and save costs. This paper reviews the latest research progress of sustained release technology for insect pheromone and the future development is prospected.
  • 加载中
    1. [1]

      Stelinski L L, Miller J R, Rogers M E. Mating Disruption of Citrus Leafminer Mediated by a Noncompetitive Mechanism at a Remarkably Low Pheromone Release Rate[J]. J Chem Ecol, 2008,34(8):1107-1113. doi: 10.1007/s10886-008-9501-8

    2. [2]

      Andersson J, Borgkarlson A K, Vongvanich N. Male Sex Pheromone Release and Female Mate Choice in a Butterfly[J]. J Exp Biol, 2007,210(6):964-970. doi: 10.1242/jeb.02726

    3. [3]

      Damberger F F, Ishida Y, Leal W S. Structural Basis of Ligand Binding and Release in Insect Pheromone-Binding Proteins:NMR Structure of Antheraea polyphemus PBP1 at pH 4.5[J]. J Mol Biol, 2007,373(4):811-819. doi: 10.1016/j.jmb.2007.07.078

    4. [4]

      Bradley S J, Suckling D M, Mcnaughton K G. A Temperature-Dependent Model for Predicting Release Rates of Pheromone from a Polyethylene Tubing Dispenser[J]. J Chem Ecol, 1995,21(6):745-760. doi: 10.1007/BF02033458

    5. [5]

      Jadhav S R, Chiou B S, Wood D F. Molecular Gels-Based Controlled Release Devices for Pheromones[J]. Soft Matter, 2011,7(3):864-867. doi: 10.1039/C0SM00878H

    6. [6]

      Herlekar I. Using Nanotechnology to Control Pests:Trapping Fruit Fly Using Pheromone Gels[J]. Sci India, 2014,106(2):14-15.

    7. [7]

      Fernandes M J G, Gonçalves M S T, Costa S P G. Photorelease of Amino Acid Neurotransmitters from Pyrenylmethyl Ester Conjugates[J]. Tertahedron, 2007,63(41):10133-10139.  

    8. [8]

      Wadl P A, Williams L H, Harris-Shultz K R. Method for DNA Isolation From Sweetpotato Weevil(Coleoptera:Curculionidae) Collected in Pheromone-Baited Traps[J]. J Econ Entomol, 2019,112(2):1001-1003. doi: 10.1093/jee/toy390

    9. [9]

      Ke F, Guo F, Yu J. Highly Site-Selective Epoxidation of Polyene Catalyzed by Metal Organic Frameworks Assisted by Polyoxometalate[J]. J Inorg Organomet P, 2017,27(4):1-7.  

    10. [10]

      Weatherston I, Miller D, Lavoiedornik J. Capillaries as Controlled Release Devices for Insect Pheromones and Other Volatile Substances-A Reevaluation:Part Ⅱ.Predicting Release Rates from Celcon and Teflon Capillaries[J]. J Chem Ecol, 1985,11(8):967-978. doi: 10.1007/BF01020667

    11. [11]

      HAN Guozhi, YAN Li, GENG Jian, et al. Preparation of a Kind of Polymer Fiber with Pest Control Effect Based on Pheromone Sustained Release[P]. 2018, 201811010888.1(in Chinese).

    12. [12]

      Mafra-Neto A, Lame F M D, Fettig C J. Manipulation of Insect Behavior with Specialized Pheromone and Lure Application Technology[J]. ACS Symp Ser, 2013,1141(4):31-58.  

    13. [13]

      Onufrieva K, Thorpe K, Hickman A. Persistence of the Gypsy Moth Pheromone, Disparlure, in the Environment in Various Climates[J]. Insects, 2013,4(1):104-116.  

    14. [14]

      Stelinski L, Vogel K, Gut L. Seconds-Long Preexposures to Pheromone from Rubber Septum or Polyethelene Tube Dispensers Alters Subsequent Behavioral Responses of Male Grapholita molesta(Lepidoptera:Tortricidae) in a Sustained-Flight Tunnel[J]. Environ Entomol, 2005,34(3):696-704. doi: 10.1603/0046-225X-34.3.696

    15. [15]

      Higbee B S, Burks C S, Larsen T E. Demonstration and Characterization of a Persistent Pheromone Lure for the Navel Orangeworm, Amyelois transitella(Lepidoptera:Pyralidae)[J]. Insects, 2014,5(3):596-608. doi: 10.3390/insects5030596

    16. [16]

      Santos Silva B, Colbert M, Santangelo M. Monitoring Microsphere Coating Processes Using PAT Tools in a Bench Scale Fluid Bed[J]. Eur J Pharm Sci, 2019,135(1):12-21.

    17. [17]

      Valladares G A. Preparation and Evaluation of Alginate/Chitosan Microspheres Containing Pheromones for Pest Control of Megaplatypus mutatus Chapuis(Platypodinae:Platypodidae)[J]. Polym Int, 2016,65(2):216-223. doi: 10.1002/pi.5049

    18. [18]

      Waldstein D E, Gut L J. Effects of Rain and Sunlight on Oriental Fruit Moth(Lepidoptera:Tortricidae) Pheromone Microcapsules Applied to Apple Foliage[J]. J Agric Urban Entomol, 2004,21(2):117-128.  

    19. [19]

      CHEN Zengliang, FANG Yuling, ZHANG Zhongning. Synthesis and Assessment of Attractiveness and Mating Disruption Efficacy of Sex Pheromone Microcapsules for the Diamondback Moth, Plutella xylostella(L.)[J]. Chinese Sci Bull, 2007,52(10):1365-1371.  

    20. [20]

      Gu X L, Zhu X, Kong X Z. Comparisons of Simple and Complex Coacervations for Preparation of Sprayable Insect Sex Pheromone Microcapsules and Release Control of the Encapsulated Pheromone Molecule[J]. J Microencapsul, 2010,27(4):355-364. doi: 10.3109/02652040903221532

    21. [21]

      ZHU Xiaoli, GU Xiangling, LIAN Jie. Preparation of Insect Sex Pheromone Simulacrum Dodecanol Containing Microcapsules and Its Controlled Release[J]. Acta Chim Sin, 2008,66(1):121-128.  

    22. [22]

      Liu X, Macaulay E D, Pickett J A. Propheromones that Release Pheromonal Carbonyl Compounds in Light[J]. J Chem Ecol, 1984,10(5):809-822. doi: 10.1007/BF00988545

    23. [23]

      Herrmann A. Using Photolabile Protecting Groups for the Controlled Release of Bioactive Volatiles[J]. Photochem Photobiol Sci, 2012,11(3):446-459. doi: 10.1039/C1PP05231D

    24. [24]

      Atta S, Ikbal M, Boda N. Photoremovable Protecting Groups as Controlled-Release Device for Sex Pheromone[J]. Photochem Photobiol, 2013,12(2):393-403. doi: 10.1039/C2PP25118C

    25. [25]

      Torsten E, Volker H, BjöRn S. Deactivation Behavior and Excited-State Properties of (Coumarin-4-yl)methyl Derivatives.2.Photocleavage of Selected (Coumarin-4-yl)methyl-Caged Adenosine Cyclic 3', 5'-Monophosphates with Fluorescence Enhancement[J]. J Org Chem, 2002,67(3):703-710. doi: 10.1021/jo010692p

    26. [26]

      Fernandes M J G, Gonçalves M S T, Costa S P G. Photorelease of Amino Acid Neurotransmitters from Pyrenylmethyl Ester Conjugates[J]. Tetrahedron, 2007,63(41):10133-10139. doi: 10.1016/j.tet.2007.07.107

    27. [27]

      Singh A K, Khade P K. Anthracene-9-methanol-A Novel Fluorescent Phototrigger for Biomolecular Caging[J]. Tetrahedron Lett, 2005,46(33):5563-5566. doi: 10.1016/j.tetlet.2005.06.026

    28. [28]

      Kong X Z, Gu X, Zhu X. Spreadable Dispersion of Insect Sex Pheromone Capsules, Preparation via Complex Coacervation and Release Control of the Encapsulated Pheromone Component Molecule[J]. Biomed Microdevices, 2009,11(1):275-285. doi: 10.1007/s10544-008-9234-z

    29. [29]

      Kikionis S, Ioannou E, Konstantopoulou M. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera Oleae and Prays Oleae[J]. J Chem Ecol, 2017,43(3):254-262. doi: 10.1007/s10886-017-0831-2

    30. [30]

      Ahmad R, Hussein M Z, Wan A K. Valuation of Controlled-Release Property and Phytotoxicity Effect of Insect Pheromone Zinc-Layered Hydroxide Nanohybrid Intercalated with Hexenoic Acid[J]. J Agric Food Chem, 2015,63(51):10893-10902. doi: 10.1021/acs.jafc.5b03102

    31. [31]

      Moreno J M, Navarro I, D az U. Single-Layered Hybrid Materials Based on 1D Associated Metal Organic Nanoribbons for Controlled Release of Pheromones[J]. Angew Chem Int Ed, 2016,128(37):11192-11196. doi: 10.1002/ange.201602215

  • 加载中
    1. [1]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    6. [6]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

    7. [7]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(11)
  • Abstract views(998)
  • HTML views(293)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return