Citation: MA Xiao, XU Chongying, XU Dongsheng, DING Yuqiang, JIN Chenggang, JI Peiyu. Synthesis and Application of Guanidinato Silicon Precursors[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1179-1185. doi: 10.11944/j.issn.1000-0518.2019.10.190050 shu

Synthesis and Application of Guanidinato Silicon Precursors

  • Corresponding author: XU Chongying, chongying_xu@yahoo.com
  • Received Date: 26 February 2019
    Revised Date: 15 April 2019
    Accepted Date: 5 May 2019

    Fund Project: National Science and Technology Major Project Ultra Large-Scale Integrated Circuit Manufacture Complete Set of Equipment and Technology 2016ZX02301003-004-004Supported by National Science and Technology Major Project Ultra Large-Scale Integrated Circuit Manufacture Complete Set of Equipment and Technology(No.2016ZX02301003-004-004)

Figures(7)

  • Three silicon compounds were synthesized by reaction of dimethyldichlorosilane with 1, 1, 3, 3-tetramethylguanidine substituent and lithium amide. The structures of the compounds were verified by 1H nuclear magnetic resonance (NMR), 13C NMR, electron ionization-mass spectrometry (EI-MS), and elemental analysis. The thermal stability and vapor pressures of these compounds were evaluated by thermo gravimetric analysis(TGA). The results show a nearly pure volatilization with low decomposition process and residual(< 1%). The highest vapor pressure ranges from 3600 Pa to 5300 Pa, which is suitable for chemical vapor deposition (CVD) precursors. Silicon films were prepared by using dimethyl-guanidinato-ethylmethylamide silane as the precursor in Helicon wave plasma CVD (HWP-CVD). The properties of the films were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The films are composed of Si, N, and C. Guanidinate-based silicon compounds as CVD precursors have potential applications in fabrication of semiconductor devices.
  • 加载中
    1. [1]

      Kern W, Schuegraf K K. Deposition Technologies and Applications: Introduction and Overview[M]. In Handbook of Thin Film Deposition Processes and Techniques.2nd ed, 2001: 11-43.

    2. [2]

      Jang W, Jeon H, Song H. The Effect of Plasma Power on the Properties of Low-Temperature Silicon Nitride Deposited by RPALD for a Gate Spacer[J]. Phys Status Solid, 2015,212(12):2785-2790. doi: 10.1002/pssa.201532274

    3. [3]

      Wrobel A M, Walkiewicz P A. Mechanism of the Initiation Step in Atomic Hydrogen-Induced CVD of Amorphous Hydrogenated Siliconcarbon Films from Single-Source Precursors[J]. Chem Vap Deposition, 1998,4(4):133-141. doi: 10.1002/(SICI)1521-3862(199807)04:04<133::AID-CVDE133>3.3.CO;2-U

    4. [4]

      Saloum S, Alkhaled B. Structural, Optical and Electrical Properties of Plasma Deposited Thin Films from Hexamethyldisilazane Compound[J]. Acta Phys Pol A, 2011,119(3):369-373. doi: 10.12693/APhysPolA.119.369

    5. [5]

      Liu X M, Yu Z J, Ryo I. Single-Source-Precursor Synthesis and Electromagnetic Properties of Novel RGO SiCN Ceramic Nanocomposites[J]. J Mater Chem C, 2017,5:7950-7960. doi: 10.1039/C7TC00395A

    6. [6]

      Faisal A M, Francesco M, Muhammad I A, et al. Synthesisi, Characterization and Optical Constants of Silicon Oxycarbide[R]. EP J Web Conferences, 2017, 139: 00002-00009.

    7. [7]

      Namrata B P, Yogesh S M, Anil S G. Synthesis and Characterization of Porogen Based Porous Low-k Thin Films[J]. Silicon, 2017,9(3):439-446. doi: 10.1007/s12633-016-9475-z

    8. [8]

      Klaus J W, Ott A W, Dillon A C. Atomic Layer Controlled Growth of Si3N4 Films Using Sequential Surface Reactions[J]. Surf Sci, 1998,418:14-19. doi: 10.1016/S0039-6028(98)00705-5

    9. [9]

      Yokoyama S, Ikeda N, Kajikawa K. Atomic-Layer Selective Deposition of Silicon Nitride on Hydrogen-Terminated Si Surfaces[J]. Appl Surf Sci, 1998,130:352-356.

    10. [10]

      Fang Q, Hodson C. Silicon Nitride and Silicon Oxide Thin Films by Plasma ALD[R]. In Proceedings of the 8th International Conference on Atomic Layer Deposition, Bruges, Belgium, 2008.

    11. [11]

      Fainer I N, Golubenko N A, Rumyantsev M Y. Synthesis of Silicon Carbonitride Dielectric Films with Improved Optical and Mechanical Properties from Tetramethyldisilazane[J]. Glass Phys Chem, 2013,39(1):77-88.  

    12. [12]

      Du L Y, Chu W X, Ding Y Q. Synthesis, Characterization, and Properties of Silicon (Ⅳ) Compounds Containing N, N'-Symmetrically Alkyl Substituted 1, 3-Diketimine Ligands and Their Potential as CVD Precursor Material[J]. Phosphorus, Sulfur Silicon Relat Elem, 2017,192(11):1212-1218. doi: 10.1080/10426507.2017.1358718

    13. [13]

      Yuan J N, Li M H, Ji N. Recent Progress in Chiral Guanidine-Catalyzed Michael Reactions[J]. Curr Org Chem, 2017,21(13):1205-1226. doi: 10.2174/1385272821666170127153759

    14. [14]

      Travis L C, Scott D B. Synthesis and Characterization of a Series of Zinc Complexes Stabilized by 1, 1, 3, 3-Tetraalkylguanidinate (TAG) Ligands:[Zn(μ-TAG){N(SiMe3)2}]2[J]. Polyhedron, 2007,26(18):5506-5512. doi: 10.1016/j.poly.2007.08.013

    15. [15]

      Chen T N, William H, Philip S C. Synthesis, Structural Characterization, and Thermal Properties of the First Germanium N, N, N', N'-Tetraalkylguanidinates[J]. Organometallics, 2010,29(2):501-504. doi: 10.1021/om900801w

    16. [16]

      Chen C W, Liu P T, Chang T C. Cu-Penetration Induced Breakdown Mechanism for a-SiCN[J]. Thin Solid Films, 2004,469:388-392.  

    17. [17]

      Wu C, Lu Y, Baklanov M R. Electrical Reliability Challenges of Advanced Low-k Dielectrics[J]. ECS J Solid State Sci Technol, 2015,4(1):N3065-N3070. doi: 10.1149/2.0091501jss

    18. [18]

      Chang W Y, Chang C Y, Jihperng L. Optical Properties of Plasma-enhanced Chemical Vapor Deposited SiCxNy Films by Using Silazane Precursors[J]. Thin Solid Films, 2017,636:671-679. doi: 10.1016/j.tsf.2017.07.016

    19. [19]

      Todd J W, Jason P C, Ahsan M. Group 11 Amidinates and Guanidinates:Potential Precursors for Vapour Deposition[J]. Eur J Inorg Chem, 2011,2011(21):3240-3247. doi: 10.1002/ejic.201100262

    20. [20]

      Wright S F, Dunn J G, Alexander K. Determination of the Vapor Pressure Curves of Adipic Acid and Triethanolamine Using Thermogravimetric Analysis[J]. Thermochim Acta, 2004,421(1):25-30.  

    21. [21]

      Edward G G, Andrew R B. Chemical Vapor Deposition of Hexagonal Gallium Selenide and Telluride Films from Cubane Precursors:Understanding the Envelope of Molecular Control[J]. Mater Chem, 1997,9(12):3037-3048. doi: 10.1021/cm9703886

    22. [22]

      Momtazur, Kamrul, Ellipsometric. XPS and FTIR Study on SiCN Films Deposited by Hot-Wire Chemical Vapor Deposition Method[J]. Mat Sci Semicon Proc, 2016,42:373-377. doi: 10.1016/j.mssp.2015.11.006

    23. [23]

      Du L Y, Chu W X, Miao H Y. Synthesis, Characterization, Thermal Properties of Silicon (Ⅳ) Compounds Containing Guanidinato Ligands and Their Potential as CVD Precursors[J]. RSC Adv, 2015,5:71637-71643. doi: 10.1039/C5RA09755J

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    6. [6]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    9. [9]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    10. [10]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Sijiang Hu Hongqiang Wang Jiming Peng Fenghua Zheng Qichang Pan Kui Liu Qingyu Li . Ideological and Political Education Practice of the Comprehensive Applied Chemistry Laboratory for Emerging Engineering Education. University Chemistry, 2024, 39(2): 214-220. doi: 10.3866/PKU.DXHX202307019

    20. [20]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

Metrics
  • PDF Downloads(2)
  • Abstract views(659)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return