Citation: MA Xiao, XU Chongying, XU Dongsheng, DING Yuqiang, JIN Chenggang, JI Peiyu. Synthesis and Application of Guanidinato Silicon Precursors[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1179-1185. doi: 10.11944/j.issn.1000-0518.2019.10.190050 shu

Synthesis and Application of Guanidinato Silicon Precursors

  • Corresponding author: XU Chongying, chongying_xu@yahoo.com
  • Received Date: 26 February 2019
    Revised Date: 15 April 2019
    Accepted Date: 5 May 2019

    Fund Project: National Science and Technology Major Project Ultra Large-Scale Integrated Circuit Manufacture Complete Set of Equipment and Technology 2016ZX02301003-004-004Supported by National Science and Technology Major Project Ultra Large-Scale Integrated Circuit Manufacture Complete Set of Equipment and Technology(No.2016ZX02301003-004-004)

Figures(7)

  • Three silicon compounds were synthesized by reaction of dimethyldichlorosilane with 1, 1, 3, 3-tetramethylguanidine substituent and lithium amide. The structures of the compounds were verified by 1H nuclear magnetic resonance (NMR), 13C NMR, electron ionization-mass spectrometry (EI-MS), and elemental analysis. The thermal stability and vapor pressures of these compounds were evaluated by thermo gravimetric analysis(TGA). The results show a nearly pure volatilization with low decomposition process and residual(< 1%). The highest vapor pressure ranges from 3600 Pa to 5300 Pa, which is suitable for chemical vapor deposition (CVD) precursors. Silicon films were prepared by using dimethyl-guanidinato-ethylmethylamide silane as the precursor in Helicon wave plasma CVD (HWP-CVD). The properties of the films were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The films are composed of Si, N, and C. Guanidinate-based silicon compounds as CVD precursors have potential applications in fabrication of semiconductor devices.
  • 加载中
    1. [1]

      Kern W, Schuegraf K K. Deposition Technologies and Applications: Introduction and Overview[M]. In Handbook of Thin Film Deposition Processes and Techniques.2nd ed, 2001: 11-43.

    2. [2]

      Jang W, Jeon H, Song H. The Effect of Plasma Power on the Properties of Low-Temperature Silicon Nitride Deposited by RPALD for a Gate Spacer[J]. Phys Status Solid, 2015,212(12):2785-2790. doi: 10.1002/pssa.201532274

    3. [3]

      Wrobel A M, Walkiewicz P A. Mechanism of the Initiation Step in Atomic Hydrogen-Induced CVD of Amorphous Hydrogenated Siliconcarbon Films from Single-Source Precursors[J]. Chem Vap Deposition, 1998,4(4):133-141. doi: 10.1002/(SICI)1521-3862(199807)04:04<133::AID-CVDE133>3.3.CO;2-U

    4. [4]

      Saloum S, Alkhaled B. Structural, Optical and Electrical Properties of Plasma Deposited Thin Films from Hexamethyldisilazane Compound[J]. Acta Phys Pol A, 2011,119(3):369-373. doi: 10.12693/APhysPolA.119.369

    5. [5]

      Liu X M, Yu Z J, Ryo I. Single-Source-Precursor Synthesis and Electromagnetic Properties of Novel RGO SiCN Ceramic Nanocomposites[J]. J Mater Chem C, 2017,5:7950-7960. doi: 10.1039/C7TC00395A

    6. [6]

      Faisal A M, Francesco M, Muhammad I A, et al. Synthesisi, Characterization and Optical Constants of Silicon Oxycarbide[R]. EP J Web Conferences, 2017, 139: 00002-00009.

    7. [7]

      Namrata B P, Yogesh S M, Anil S G. Synthesis and Characterization of Porogen Based Porous Low-k Thin Films[J]. Silicon, 2017,9(3):439-446. doi: 10.1007/s12633-016-9475-z

    8. [8]

      Klaus J W, Ott A W, Dillon A C. Atomic Layer Controlled Growth of Si3N4 Films Using Sequential Surface Reactions[J]. Surf Sci, 1998,418:14-19. doi: 10.1016/S0039-6028(98)00705-5

    9. [9]

      Yokoyama S, Ikeda N, Kajikawa K. Atomic-Layer Selective Deposition of Silicon Nitride on Hydrogen-Terminated Si Surfaces[J]. Appl Surf Sci, 1998,130:352-356.

    10. [10]

      Fang Q, Hodson C. Silicon Nitride and Silicon Oxide Thin Films by Plasma ALD[R]. In Proceedings of the 8th International Conference on Atomic Layer Deposition, Bruges, Belgium, 2008.

    11. [11]

      Fainer I N, Golubenko N A, Rumyantsev M Y. Synthesis of Silicon Carbonitride Dielectric Films with Improved Optical and Mechanical Properties from Tetramethyldisilazane[J]. Glass Phys Chem, 2013,39(1):77-88.  

    12. [12]

      Du L Y, Chu W X, Ding Y Q. Synthesis, Characterization, and Properties of Silicon (Ⅳ) Compounds Containing N, N'-Symmetrically Alkyl Substituted 1, 3-Diketimine Ligands and Their Potential as CVD Precursor Material[J]. Phosphorus, Sulfur Silicon Relat Elem, 2017,192(11):1212-1218. doi: 10.1080/10426507.2017.1358718

    13. [13]

      Yuan J N, Li M H, Ji N. Recent Progress in Chiral Guanidine-Catalyzed Michael Reactions[J]. Curr Org Chem, 2017,21(13):1205-1226. doi: 10.2174/1385272821666170127153759

    14. [14]

      Travis L C, Scott D B. Synthesis and Characterization of a Series of Zinc Complexes Stabilized by 1, 1, 3, 3-Tetraalkylguanidinate (TAG) Ligands:[Zn(μ-TAG){N(SiMe3)2}]2[J]. Polyhedron, 2007,26(18):5506-5512. doi: 10.1016/j.poly.2007.08.013

    15. [15]

      Chen T N, William H, Philip S C. Synthesis, Structural Characterization, and Thermal Properties of the First Germanium N, N, N', N'-Tetraalkylguanidinates[J]. Organometallics, 2010,29(2):501-504. doi: 10.1021/om900801w

    16. [16]

      Chen C W, Liu P T, Chang T C. Cu-Penetration Induced Breakdown Mechanism for a-SiCN[J]. Thin Solid Films, 2004,469:388-392.  

    17. [17]

      Wu C, Lu Y, Baklanov M R. Electrical Reliability Challenges of Advanced Low-k Dielectrics[J]. ECS J Solid State Sci Technol, 2015,4(1):N3065-N3070. doi: 10.1149/2.0091501jss

    18. [18]

      Chang W Y, Chang C Y, Jihperng L. Optical Properties of Plasma-enhanced Chemical Vapor Deposited SiCxNy Films by Using Silazane Precursors[J]. Thin Solid Films, 2017,636:671-679. doi: 10.1016/j.tsf.2017.07.016

    19. [19]

      Todd J W, Jason P C, Ahsan M. Group 11 Amidinates and Guanidinates:Potential Precursors for Vapour Deposition[J]. Eur J Inorg Chem, 2011,2011(21):3240-3247. doi: 10.1002/ejic.201100262

    20. [20]

      Wright S F, Dunn J G, Alexander K. Determination of the Vapor Pressure Curves of Adipic Acid and Triethanolamine Using Thermogravimetric Analysis[J]. Thermochim Acta, 2004,421(1):25-30.  

    21. [21]

      Edward G G, Andrew R B. Chemical Vapor Deposition of Hexagonal Gallium Selenide and Telluride Films from Cubane Precursors:Understanding the Envelope of Molecular Control[J]. Mater Chem, 1997,9(12):3037-3048. doi: 10.1021/cm9703886

    22. [22]

      Momtazur, Kamrul, Ellipsometric. XPS and FTIR Study on SiCN Films Deposited by Hot-Wire Chemical Vapor Deposition Method[J]. Mat Sci Semicon Proc, 2016,42:373-377. doi: 10.1016/j.mssp.2015.11.006

    23. [23]

      Du L Y, Chu W X, Miao H Y. Synthesis, Characterization, Thermal Properties of Silicon (Ⅳ) Compounds Containing Guanidinato Ligands and Their Potential as CVD Precursors[J]. RSC Adv, 2015,5:71637-71643. doi: 10.1039/C5RA09755J

  • 加载中
    1. [1]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    2. [2]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    5. [5]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    7. [7]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    8. [8]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    11. [11]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    14. [14]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    15. [15]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    16. [16]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    19. [19]

      Honglin Li Shengyan Yang Xiaofei Zhang Xiaodong Wang Yang Zhang Yang Han Guoxu Qin Chuan Li Fanfan Liu . Exploration and Practice of the “One Body, Two Wings” Innovative Talent Training Model for Chemical and Materials Disciplines in Local Applied Undergraduate Universities under the “Emerging Engineering Education” Context. University Chemistry, 2025, 40(11): 83-91. doi: 10.12461/PKU.DXHX202412067

    20. [20]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

Metrics
  • PDF Downloads(2)
  • Abstract views(1171)
  • HTML views(331)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return