Citation: ZHAO Jiaxin, XIE Yaqiao, LI Jielan, XU Zidi, GAO Feng, QU Jiangying. Self-assembly of Graphene Mini-motor and Its Ethanol-Driven Motion and Oil Adsorption Properties[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1202-1210. doi: 10.11944/j.issn.1000-0518.2019.10.190039 shu

Self-assembly of Graphene Mini-motor and Its Ethanol-Driven Motion and Oil Adsorption Properties

  • Corresponding author: QU Jiangying, qujianggaofeng@163.com
  • Received Date: 18 February 2019
    Revised Date: 10 April 2019
    Accepted Date: 29 April 2019

    Fund Project: the NSFC 51972059the Research Start-Up Funds of Dongguan University of Technology GB200902-31the Research Start-Up Funds of Dongguan University of Technology GC300501-072Supported by the NSFC(No.U1610114, No.51972059), and the Research Start-Up Funds of Dongguan University of Technology(No.GB200902-31, No.GC300501-072)the NSFC U1610114

Figures(6)

  • The preparation of three dimensional(3D) graphene hydrogels is mostly concentrated on the centimeter scale and solid symmetrical structures while the contradiction between small size and low density exists. The graphene mini-motor constructed by the combination of shear-driven aggregation and capillary force induced drying followed by high temperature reduction using graphene oxide suspension as the precursor and aniline as the crosslinking agent. The graphene mini-motor shows ethanol-driven motion and oil adsorption performance because of its small size(about 2~5 mm in diameter), low density(about 0.2~0.7 g/cm3), hollow structure and hydrophobic oleophilicity. It is found that the fastest speed of ethanol-driven rotation can reach 3 r/s, and the saturated adsorption capacity is 794.9 mg/g.
  • 加载中
    1. [1]

      Ozin G A, Manners I, Fournier-Bidoz S. Dream Nanomachines[J]. Adv Mater, 2005,17(24):3011-3018. doi: 10.1002/adma.200501767

    2. [2]

      Ebbens S J, Howse J R. In Pursuit of Propulsion at the Nanoscale[J]. Soft Matter, 2010,6(4):726-738. doi: 10.1039/b918598d

    3. [3]

      Sengupta S, Ibele M E, Sen A. Fantastic Voyage:Designing Self-powered Nanorobots[J]. Angew Chem Int Ed Engl, 2012,51(34):8434-8445. doi: 10.1002/anie.201202044

    4. [4]

      Sanchez S, Soler L, Katuri J. Chemically Powered Micro-and Nanomotors[J]. Angew Chem Int Ed Engl, 2015,54(5):1414-1444. doi: 10.1002/anie.201406096

    5. [5]

      Wong F, Dey K K, SEN A. Synthetic Micro/Nanomotors and Pumps:Fabrication and Applications[J]. Annu Rev Mater Res, 2016,46(1):407-432. doi: 10.1146/annurev-matsci-070115-032047

    6. [6]

      Shao J, Xuan M, Dai L. Near-Infrared-Activated Nanocalorifiers in Microcapsules:Vapor Bubble Generation for In Vivo Enhanced Cancer Therapy[J]. Angew Chem Int Ed Engl, 2015,54(43):12782-12787. doi: 10.1002/anie.201506115

    7. [7]

      Mou F, Deng P, Chen C. Micromotors:Magnetically Modulated Pot-Like MnFe2O4 Micromotors:Nanoparticle Assembly Fabrication and Their Capability for Direct Oil Removal[J]. Adv Funct Mater, 2015,25(39):6173-6181. doi: 10.1002/adfm.201502835

    8. [8]

      Zhang Q, Dong R, Cheng X. Spiropyran-Decorated SiO2 Pt Janus Micromotor:Preparation and Light-Induced Dynamic Self-assembly and Disassembly[J]. ACS Appl Mater Interfaces, 2015,7(44):24585-24591. doi: 10.1021/acsami.5b06448

    9. [9]

      Dong R, Zhang Q, Gao W. Highly Efficient Light-Driven TiO2-Au Janus Micromotors[J]. ACS Nano, 2015,10(1):839-844.  

    10. [10]

      Baraban L, Tasinkevych M, Popescu M N. Transport of Cargo by Catalytic Janus Micro-Motors[J]. Soft Matter, 2011,8(1):48-52.  

    11. [11]

      Wang H, Zhao G, Pumera M. Beyond Platinum:Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts[J]. J Am Chem Soc, 2014,136(7):2719-2722. doi: 10.1021/ja411705d

    12. [12]

      Orozco J, García-Gradilla V, D'Agostino M. Artificial Enzyme-Powered Microfish for Water-Quality Testing[J]. ACS Nano, 2013,7(1):818-824. doi: 10.1021/nn305372n

    13. [13]

      Solovev A A, Sanchez S, Mei Y. Tunable Catalytic Tubular Micro-Pumps Operating at Low Concentrations of Hydrogen Peroxide[J]. Phys Chem Chem Phys, 2011,13(21):10131-10135. doi: 10.1039/c1cp20542k

    14. [14]

      Mei Y, Solovev A A, Sanchez S. Rolled-Up Nanotech on Polymers:From Basic Perception to Self-propelled Catalytic Microengines[J]. Chem Soc Rev, 2011,40(5):2109-2119. doi: 10.1039/c0cs00078g

    15. [15]

      Yang Y, Song S, Zhao Z. Graphene Oxide(GO)/Polyacrylamide(PAM) Composite Hydrogels as Efficient Cationic Dye Adsorbents[J]. Colloids Surf A:Physicochem Eng Asp, 2017,513(5):315-324.  

    16. [16]

      Tang Z, Gao L, Wu Y. BSA-rGO Nanocomposite Hydrogel Formed by UV Polymerization and in Situ Reduction Applied as Biosensor Electrode[J]. J Mater Chem B, 2013,1(40):5393-5397. doi: 10.1039/c3tb20899k

    17. [17]

      Parsamanesh M, Tehrani A D, Mansourpanah Y. Supramolecular Hydrogel Based on Cyclodextrin Modified GO as a Potent Natural Organic Matter Absorbent[J]. Eur Polym J, 2017,92:126-136. doi: 10.1016/j.eurpolymj.2017.05.001

    18. [18]

      Xu Y, Sheng K, Li C. Self-assembled Graphene Hydrogel via a One-Step Hydrothermal Process[J]. ACS Nano, 2010,4(7):4324-4330. doi: 10.1021/nn101187z

    19. [19]

      Xu X, Zhang Q, Yu Y. Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio[J]. Adv Mater, 2016,28(41):9223-9230. doi: 10.1002/adma.201603079

    20. [20]

      Yang Q, Li H, Tao Y. Ultra-Thick Graphene Bulk Electrodes of Supercapacitors for Compact Energy Storage[J]. Energy Environ Sci, 2016,9(10):3135-3142. doi: 10.1039/C6EE00941G

    21. [21]

      Qu J, Li Y, Lv S. Dense 3D Graphene Macroforms with Nanotuned Pore Sizes for High Performance Supercapacitor Electrodes[J]. J Phys Chem C, 2015,119(43):24373-24380. doi: 10.1021/acs.jpcc.5b06616

    22. [22]

      Yue J, Shao H, Li C. Versatile Graphene Oxide Putty-Like Material[J]. Adv Mater, 2016,28(46):10287-10292. doi: 10.1002/adma.201603284

    23. [23]

      Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017

    24. [24]

      Wang X, Bai H, Shi G. Size Fractionation of Graphene Oxide Sheets by pH-Assisted Selective Sedimentation[J]. J Am Chem Soc, 2011,133(16):6338-6342. doi: 10.1021/ja200218y

    25. [25]

      Lee S H, Kotal M, Oh J H. Nanohole-Structured, Iron Oxide-Decorated and Gelatin-Functionalized Graphene for High Rate and High Capacity Li-Ion Anode[J]. Carbon, 2017,119:355-364. doi: 10.1016/j.carbon.2017.04.031

    26. [26]

      Chang J, Sheng L, Wei T. Molecular Diffusion-Driven Motion in 2D Graphene Film[J]. Adv Funct Mater, 2018,28(19)1707053. doi: 10.1002/adfm.201707053

    27. [27]

      Jin H, Marmur A, Ikkala O. Vapour-Driven Marangoni Propulsion:Continuous, Prolonged and Tunable Motion[J]. Chem Sci, 2012,3(8):2526-2529. doi: 10.1039/c2sc20355c

    28. [28]

      Wang H, Sofer Z, Moo J G S. Simultaneous Self-exfoliation and Autonomous Motion of MoS2 Particles in Water[J]. Chem Commun, 2015,51(48):9899-9902. doi: 10.1039/C5CC03401A

    29. [29]

      Zhang H, Duan W, Liu L. Depolymerization-Powered Autonomous Motors Using Biocompatible Fuel[J]. J Am Chem Soc, 2013,135(42):15734-15737. doi: 10.1021/ja4089549

    30. [30]

      Gui X C, Li H B, Wang K L. Recyclable Carbon Nanotube Sponges for Oil Absorption[J]. Acta Mater, 2011,59(12):4798-4804. doi: 10.1016/j.actamat.2011.04.022

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(3)
  • Abstract views(691)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return