Citation: HONG Dongyang, ZHOU Jinsong, ZHOU Qixin. Effect of Hydrogen Sulfur on the Removal of Elemental Mercury with Activated Carbon[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1194-1201. doi: 10.11944/j.issn.1000-0518.2019.10.190007 shu

Effect of Hydrogen Sulfur on the Removal of Elemental Mercury with Activated Carbon

  • Corresponding author: ZHOU Jinsong, zhoujs@zju.edu.cn
  • Received Date: 9 January 2019
    Revised Date: 9 April 2019
    Accepted Date: 29 May 2019

    Fund Project: the National Natural Science Foundation of China 51576173Supported by the National Natural Science Foundation of China(No.51576173)

Figures(5)

  • H2S is a component with sulfur in coal gas and it is worth studying whether activated carbon can catalyze the H2S in coal gas to form active sulfur, so as to promote the synergistic removal of H2S and Hg0. In this paper, the mechanism of H2S influence on the removal of Hg0 from activated carbon was analyzed by temperature programmed desorption method and thermodynamics. H2S significantly weakened the adsorption of activated carbon on Hg0 in low temperature, which may be caused by the consumption of adsorbed oxygen on the surface of activated carbon and the substitution of oxygen in oxygen containing functional groups by H2S. Then the feasibility of H2S in coal gas to remove Hg0 and H2S in high temperature was discussed. High temperature sulfuration cannot effectively sulfurize activated carbon with active sulfur. Therefore, mercury removal in the form of HgS with H2S as a sulfur source is not a feasible method by activated carbon. The mechanism revealed here in on the influence of H2S on Hg0 removal from pure activated carbon provides the guidance for designing activated carbon for gas mercury removal.
  • 加载中
    1. [1]

      BP. BP Energy Outlook 2018 n.d[EB/OL]. (2018-09-11)[2018-08-12]. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf.

    2. [2]

      Green M. Recent Developments and Current Position of Underground Coal Gasification[J]. Proc Inst Mech Eng Part A J Power Energy, 2017,232(1):39-46.  

    3. [3]

      Fan J, Hong H, Jin H. Biomass and Coal Co-Feed Power and SNG Polygeneration with Chemical Looping Combustion to Reduce Carbon Footprint for Sustainable Energy Development:Process Simulation and Thermodynamic Assessment[J]. Renew Energy, 2018,125:260-269. doi: 10.1016/j.renene.2018.02.116

    4. [4]

      Stiegel G J, Maxwell R C. Gasification Technologies:The Path to Clean, Affordable Energy in the 21st Century[J]. Fuel Process Technol, 2001,71(1-3):79-97. doi: 10.1016/S0378-3820(01)00138-2

    5. [5]

      Wu S, Azhar Uddin M, Sasaoka E. Characteristics of the Removal of Mercury Vapor in Coal Derived Fuel Gas over Iron Oxide Sorbents[J]. Fuel, 2006,85(2):213-218. doi: 10.1016/j.fuel.2005.01.020

    6. [6]

      Qiu K, Zhou J, Qi P. Experimental Study on ZnO-TiO2 Sorbents for the Removal of Elemental Mercury[J]. Korean J Chem Eng, 2017,34(9):2383-2389. doi: 10.1007/s11814-017-0154-6

    7. [7]

      Yue C, Wang J, Han L. Effects of Pretreatment of Pd/AC Sorbents on the Removal of Hg0 from Coal Derived Fuel Gas[J]. Fuel Process Technol, 2015,135:125-132. doi: 10.1016/j.fuproc.2014.11.038

    8. [8]

      Feng W, Borguet E, Vidic R D. Sulfurization of Carbon Surface for Vapor Phase Mercury Removal-Ⅰ:Effect of Temperature and Sulfurization Protocol[J]. Carbon N Y, 2006,44(14):2990-2997. doi: 10.1016/j.carbon.2006.05.019

    9. [9]

      Cal M P, Strickler B W, Lizzio A A. High Temperature Hydrogen Sulfide Adsorption on Activated Carbon:Ⅰ.Effects of Gas Composition and Metal Addition[J]. Carbon, 2000,38(13):1757-1765. doi: 10.1016/S0008-6223(00)00010-5

    10. [10]

      Cal M, Strickler B, Lizzio A. High Temperature Hydrogen Sulfide Adsorption on Activated Carbon:Ⅱ.Effects of Gas Temperature, Gas Pressure and Sorbent Regeneration[J]. Carbon, 2000,38(13):1767-1774. doi: 10.1016/S0008-6223(00)00011-7

    11. [11]

      Li G, Shen B, Lu F. The Mechanism of Sulfur Component in Pyrolyzed Char from Waste Tire on the Elemental Mercury Removal[J]. Chem Eng J, 2015,273:446-454. doi: 10.1016/j.cej.2015.03.040

    12. [12]

      Zhang H, Zhao J, Fang Y. Catalytic Oxidation and Stabilized Adsorption of Elemental Mercury from Coal-derived Fuel Gas[J]. Energy Fuels, 2012,26(3):1629-1637. doi: 10.1021/ef201453d

    13. [13]

      Zhang H, Zhao J T, Fang Y T. Role of Activated Carbon Structures in Catalytic Oxidation Adsorption for Mercury[J]. J Fuel Chem Technol, 2015,43(3):360-366.  

    14. [14]

      Sun P, Zhang B, Zeng X. Deep Study on Effects of Activated Carbon's Oxygen Functional Groups for Elemental Mercury Adsorption Using Temperature Programmed Desorption Method[J]. Fuel, 2017,200:100-106. doi: 10.1016/j.fuel.2017.03.031

    15. [15]

      Xu Y, Zeng X, Luo G. Study on the Effects of Carrier and Modifier on Mercury Adsorption Behavior over Halides Modified Sorbents Using Temperature Programmed Desorption Method[J]. Fuel Process Technol, 2018,178:293-300. doi: 10.1016/j.fuproc.2018.06.008

    16. [16]

      MAO Yuzhen. Mechanism Study on Mercury Removal by Co-based Sorbents from Simulated Syngas[D]. Hangzhou: Zhejiang University, 2018(in Chinese). 

    17. [17]

      Wu S, Uddin M A, Nagano S. Fundamental Study on Decomposition Characteristics of Mercury Compounds over Solid Powder by Temperature-Programmed Decomposition Desorption Mass Spectrometry[J]. Energy Fuels, 2011,25(1):144-153. doi: 10.1021/ef1009499

    18. [18]

      Li Y H, Lee C W, Gullett B K. Importance of Activated Carbon's Oxygen Surface Functional Groups on Elemental Mercury Adsorption[J]. Fuel, 2003,82(4):451-457. doi: 10.1016/S0016-2361(02)00307-1

    19. [19]

      Liu J, Cheney M A, Wu F. Effects of Chemical Functional Groups on Elemental Mercury Adsorption on Carbonaceous Surfaces[J]. J Hazard Mater, 2011,186(1):108-113. doi: 10.1016/j.jhazmat.2010.10.089

    20. [20]

      Puri B R. Surface Complexes on Carbon[C]//P.L. Walker(Ed.), Chemistry and Physics of Carbon, American Carbon Society, vol. 6, New York(USA): Marcel Dekker: 1970.

    21. [21]

      Farrauto R, Hwang S, Shore L. New Material Needs for Hydrocarbon Fuel Processing:Generating Hydrogen for the PEM Fuel Cell[J]. Annu Rev Mater Res, 2003,33(1):1-27.  

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    9. [9]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    10. [10]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    18. [18]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

Metrics
  • PDF Downloads(4)
  • Abstract views(864)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return