Citation: ZHANG Xiaomei, LI Miaomiao, WANG Qi, JIANG Yu, GENG Yanhou. Near-infrared Absorbing Non-fullerene Acceptors with Dithienopyrrole as π Spacer for Organic Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 1023-1034. doi: 10.11944/j.issn.1000-0518.2019.09.190048 shu

Near-infrared Absorbing Non-fullerene Acceptors with Dithienopyrrole as π Spacer for Organic Solar Cells

  • Corresponding author: LI Miaomiao, miaomiao.li@tju.edu.cn
  • Received Date: 23 February 2019
    Revised Date: 18 March 2019
    Accepted Date: 22 March 2019

    Fund Project: the National Natural Science Foundation of China 51703158Supported by the National Natural Science Foundation of China(No.51703158)

Figures(5)

  • A series of non-fullerene acceptors with dithieno[3, 2-b:2', 3'-d]pyrrole(DTP) π bridge to link indacenodithiophene(IDT) core and 3-(dicyanomethylidene)indan-1-one(IC) or difluorinated IC(2F-IC) terminals, i.e. IDTDTP-C2C2-H and IDTDTP-C2C2-F with 1-ethylpropyl on DTP, IDTDTP-C6C6-H and IDTDTP-C6C6-F with 1-hexylheptyl on DTP, and IDTDTP-C12-H and IDTDTP-C12-F with n-dodecyl on DTP, was designed and synthesized. These molecules achieved low optical band gaps(1.37~1.44 eV). Compared with the IC-terminated molecules(IDTDTP-C2C2-H, IDTDTP-C6C6-H and IDTDTP-C12-H), IDTDTP-C2C2-F, IDTDTP-C6C6-F and IDTDTP-C12-F with 2F-IC as terminals show red-shifted absorption spectra and down-shifted the highest occupied molecular orbitals(HOMO) and the lowest unoccupied molecular orbitals(LUMO) energy levels owing to the electron-withdrawing ability of F substituents. Organic solar cells(OSCs) based on these acceptors were fabricated with the wide-bandgap polymer poly[2, 6-(4, 8-bis(5-(2-ethylhexyl))thiophen-2-yl)-benzo[1, 2-b:4, 5-b']dithiophene-alt-5, 5-(1', 3'-di-2-thienyl)-5', 7'-bis(2-ethylhexyl)-benzo[1', 2'-c:4', 5'-c']dithiophene-4, 8-dione](PBDB-T) as the donor. Owing to the higher and more balanced hole and electron mobilities, and a proper phase-separated morphology in the blend film, IDTDTP-C6C6-F with 1-hexylheptyl on DTP unit achieved a maximum power conversion efficiency(PCE) of 6.94% with an open-circuit voltage(Voc) of 0.86 V, a short circuit current density(Jsc) of 13.56 mA/cm2 and a fill factor(FF) of 59.5%.
  • 加载中
    1. [1]

      Cheng Y J, Yang S H, Hsu C S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chem Rev, 2009,109(11):5868-5923. doi: 10.1021/cr900182s

    2. [2]

      Li Y F. Molecular Design of Photovoltaic Materials for Polymer Solar Cells:Toward Suitable Electronic Energy Levels and Broad Absorption[J]. Acc Chem Res, 2012,45(5):723-733. doi: 10.1021/ar2002446

    3. [3]

      Li G, Zhu R, Yang Y. Polymer Solar Cells[J]. Nat Photonics, 2012,6:153-161. doi: 10.1038/nphoton.2012.11

    4. [4]

      Kim T, Kim J H, Kang T E. Flexible, Highly Efficient All-Polymer Solar Cells[J]. Nat Commun, 2015,6:8547-8553. doi: 10.1038/ncomms9547

    5. [5]

      Sun C, Pan F, Bin H. A Low Cost and High Performance Polymer Donor Material for Polymer Solar Cells[J]. Nat Commun, 2018,9:743-752. doi: 10.1038/s41467-018-03207-x

    6. [6]

      Guo X, Zhou N, Lou S J. Polymer Solar Cells with Enhanced Fill Factors[J]. Nat Photonics, 2013,7:825-833. doi: 10.1038/nphoton.2013.207

    7. [7]

      Wang M, Hu X, Liu P. Donor-Acceptor Conjugated Polymer Based on Naphtho[1, 2-c:5, 6-c]bis[1, 2, 5] thiadiazole for High-Performance Polymer Solar Cells[J]. J Am Chem Soc, 2011,133(25):9638-9641. doi: 10.1021/ja201131h

    8. [8]

      Wu W, Zhang G, Xu X. Wide Bandgap Molecular Acceptors with a Truxene Core for Efficient Nonfullerene Polymer Solar Cells:Linkage Position on Molecular Configuration and Photovoltaic Properties[J]. Adv Funct Mater, 2018,28(18)1707493. doi: 10.1002/adfm.201707493

    9. [9]

      Liu J, Chen S, Qian D. Fast Charge Separation in a Non-fullerene Organic Solar Cell with a Small Driving Force[J]. Nat Energy, 2016,116089. doi: 10.1038/nenergy.2016.89

    10. [10]

      Li S, Ye L, Zhao W. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells[J]. Adv Mater, 2016,28(42):9423-9429. doi: 10.1002/adma.201602776

    11. [11]

      Qiu N, Zhang H, Wan X. A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for High-Performance Organic Solar Cells[J]. Adv Mater, 2017,29(6)1604964. doi: 10.1002/adma.201604964

    12. [12]

      Yang Y, Zhang Z G, Bin H. Side-Chain Isomerization on an N-Type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells[J]. J Am Chem Soc, 2016,138(45):15011-15018. doi: 10.1021/jacs.6b09110

    13. [13]

      Cheng P, Li G, Zhan X. Next-Generation Organic Photovoltaics Based on Non-fullerene Acceptors[J]. Nat Photonics, 2018,12:131-142. doi: 10.1038/s41566-018-0104-9

    14. [14]

      Lin Y, Wang J, Zhang Z G. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Adv Mater, 2015,27(7):1170-1174. doi: 10.1002/adma.201404317

    15. [15]

      Lin Y, Zhang Z G, Bai H. High-Performance Fullerene-Free Polymer Solar Cells with 6.31% Efficiency[J]. Energy Environ Sci, 2015,8:610-616. doi: 10.1039/C4EE03424D

    16. [16]

      Lin Y, Zhao F, He Q. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics[J]. J Am Chem Soc, 2016,138(14):4955-4961. doi: 10.1021/jacs.6b02004

    17. [17]

      Zhao F, Dai S, Wu Y. Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency[J]. Adv Mater, 2017,29(18)1700144. doi: 10.1002/adma.201700144

    18. [18]

      Liu F, Zhou Z, Zhang C. A Thieno[3, 4-b]thiophene-Based Non-fullerene Electron Acceptor for High-Performance Bulk-Heterojunction Organic Solar Cells[J]. J Am Chem Soc, 2016,138(48):15523-15526. doi: 10.1021/jacs.6b08523

    19. [19]

      Li R, Liu G, Xie R. Introducing Cyclic Alkyl Chains into Small-molecule Acceptors for Efficient Polymer Solar Cells[J]. J Mater Chem C, 2018,6:7046-7053. doi: 10.1039/C8TC01780H

    20. [20]

      Liu Y, Zhang Z, Feng S. Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells[J]. J Am Chem Soc, 2017,139(9):3356-3359. doi: 10.1021/jacs.7b00566

    21. [21]

      Zhao W, Li S, Yao H. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. J Am Chem Soc, 2017,139(21):7148-7151. doi: 10.1021/jacs.7b02677

    22. [22]

      Li R, Liu G, Xiao M. Non-Fullerene Acceptors Based on Fused-ring Oligomers for Efficient Polymer Solar Cells via Complementary Light-Absorption[J]. J Mater Chem A, 2017,5:23926-23936. doi: 10.1039/C7TA06631G

    23. [23]

      Sun J, Ma X, Zhang Z. Dithieno[3, 2-b:2', 3'-d]pyrrol Fused Nonfullerene Acceptors Enabling over 13% Efficiency for Organic Solar Cells[J]. Adv Mater, 2018,30(16)1707150. doi: 10.1002/adma.201707150

    24. [24]

      Xu X, Yu T, Bi Z. Realizing over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1, 3, 4-Thiadiazole-Based Wide-Bandgap Copolymers[J]. Adv Mater, 2018,30(3)1703973. doi: 10.1002/adma.201703973

    25. [25]

      Zhao W, Zhang S, Zhang Y. Environmentally Friendly Solvent-Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Blade-Coating Method[J]. Adv Mater, 2018,30(4)1704837. doi: 10.1002/adma.201704837

    26. [26]

      Li S, Ye L, Zhao W. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells[J]. J Am Chem Soc, 2018,140(23):7159-7167. doi: 10.1021/jacs.8b02695

    27. [27]

      Xiao Z, Jia X, Ding L. Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency[J]. Sci Bull, 2017,62:1562-1564. doi: 10.1016/j.scib.2017.11.003

    28. [28]

      Li W, Hendriks K H, Wienk M M. Diketopyrrolopyrrole Polymers for Organic Solar Cells[J]. Acc Chem Res, 2016,49(1):78-85. doi: 10.1021/acs.accounts.5b00334

    29. [29]

      You J, Dou L, Yoshimura K. A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency[J]. Nat Commun, 2013,4:1446-1455. doi: 10.1038/ncomms2411

    30. [30]

      Li W, Furlan A, Hendriks K H. Efficient Tandem and Triple-Junction Polymer Solar Cells[J]. J Am Chem Soc, 2013,135(15):5529-5532. doi: 10.1021/ja401434x

    31. [31]

      Chang C Y, Zuo L, Yip H L. A Versatile Fluoro-Containing Low-Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells[J]. Adv Funct Mater, 2013,23(40):5084-5090. doi: 10.1002/adfm201301557

    32. [32]

      Zhou E, Wei Q, Yamakawa S. Diketopyrrolopyrrole-Based Semiconducting Polymer for Photovoltaic Device with Photocurrent Response Wavelengths up to 1.1μm[J]. Macromolecules, 2010,43(2):821-826. doi: 10.1021/ma902398q

    33. [33]

      Bai H, Wang Y, Cheng P. An Electron Acceptor Based on Indacenodithiophene and 1, 1-Dicyanomethylene-3-Indanone for Fullerene-Free Organic Solar Cells[J]. J Mater Chem A, 2015,3(5):1910-1914. doi: 10.1039/C4TA06004K

    34. [34]

      Yao H, Chen Y, Qin Y. Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells[J]. Adv Mater, 2016,28(37):8283-8287. doi: 10.1002/adma.201602642

    35. [35]

      Cui Y, Yang C, Yao H. Efficient Semitransparent Organic Solar Cells with Tunable Color Enabled by an Ultralow-Bandgap Nonfullerene Acceptor[J]. Adv Mater, 2017,29(43)1703080. doi: 10.1002/adma.201703080

    36. [36]

      Yao H, Cui Y, Yu R. Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap[J]. Angew Chem Int Ed, 2017,56(11):3045-3049. doi: 10.1002/anie.201610944

    37. [37]

      Yan C, Wu Y, Wang J. Enhancing Performance of Non-Fullerene Organic Solar Cells via Side Chain Engineering of Fused-Ring Electron Acceptors[J]. Dyes Pigm, 2017,139:627-634. doi: 10.1016/j.dyepig.2016.12.065

    38. [38]

      Liang Z, Li M, Zhang X. Near-Infrared Absorbing Non-Fullerene Acceptors with Selenophene as π Bridges for Efficient Organic Solar Cells[J]. J Mater Chem A, 2018,6:8059-8067. doi: 10.1039/C8TA00783G

    39. [39]

      Liu F, Zhou Z, Zhang C. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor[J]. Adv Mater, 2017,29(21)1606574. doi: 10.1002/adma.201606574

    40. [40]

      Duan C, Franeker J J, Wienk M M. High Open Circuit Voltage Polymer Solar Cells Enabled by Employing Thiazoles in Semiconducting Polymers[J]. Polym Chem, 2016,7:5730-5738. doi: 10.1039/C6PY01083K

    41. [41]

      Duan C, Gao K, Colberts F J M. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers[J]. Adv Energy Mater, 2017,7(19)1700519. doi: 10.1002/aenm.201700519

    42. [42]

      Hou J, Inganas O, Friend R H. Organic Solar Cells Based on Non-fullerene Acceptors[J]. Nat Mater, 2018,17(2):119-128. doi: 10.1038/nmat5063

    43. [43]

      Huang C, Liao X, Gao K. Highly Efficient Organic Solar Cells Based on S, N-Heteroacene Non-fullerene Acceptors[J]. Chem Mater, 2018,30(15):5429-5434. doi: 10.1021/acs.chemmater.8b02276

    44. [44]

      Yue W, Zhao Y, Shao S. Novel NIR-Absorbing Conjugated Polymers for Efficient Polymer Solar Cells:Effect of Alkyl Chain Length on Device Performance[J]. J Mater Chem, 2009,19:2199-2206. doi: 10.1039/b818885h

    45. [45]

      Zhou E, Nakamura M, Nishizawa T. Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3, 2-b:2', 3'-d]pyrrole[J]. Macromolecules, 2008,41(22):8302-8305. doi: 10.1021/ma802052w

    46. [46]

      Duan C, Willems R E M, Franeker J J. Effect of Side Chain Length on the Charge Transport, Morphology, and Photovoltaic Performance of Conjugated Polymers in Bulk Heterojunction Solar Cells[J]. J Mater Chem A, 2016,4:1855-1866. doi: 10.1039/C5TA09483F

    47. [47]

      Bin H, Gao L, Zhang Z G. 11.4% Efficiency Non-Fullerene Polymer Solar Cells with Trialkylsilyl Substituted 2D-Conjugated Polymer as Donor[J]. Nat Commun, 2016,7:13651-13661. doi: 10.1038/ncomms13651

    48. [48]

      Wang J, Wang S, Duan C. Conjugated Polymers Based on Difluorobenzoxadiazole Toward Practical Application of Polymer Solar Cells[J]. Adv Energy Mater, 2017,7(22)1702033. doi: 10.1002/aenm.201702033

    49. [49]

      Jia X, Chen Z, Duan C. Polythiophene Derivatives Compatible with Both Fullerene and Non-fullerene Acceptors for Polymer Solar Cells[J]. J Mater Chem C, 2019,7:314-323. doi: 10.1039/C8TC04746D

    50. [50]

      Yang Y, Zhang Z G, Bin H. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells[J]. J Am Chem Soc, 2016,138(45):15011-15018. doi: 10.1021/jacs.6b09110

    51. [51]

      Liu X, Zhang C, Duan C. Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability[J]. J Am Chem Soc, 2018,140(28):8934-8943. doi: 10.1021/jacs.8b05038

    52. [52]

      Liu X, Xie B, Duan C. A High Dielectric Constant Non-Fullerene Acceptor for Efficient Bulk-Heterojunction Organic Solar Cells[J]. J Mater Chem A, 2018,6:395-403. doi: 10.1039/C7TA10136H

    53. [53]

      Chen S, Lee K C, Zhang Z G. An Indacenodithiophene-Quinoxaline Polymer Prepared by Direct Arylation Polymerization for Organic Photovoltaics[J]. Macromolecules, 2016,49(2):527-536. doi: 10.1021/acs.macromol.5b02324

    54. [54]

      Perera I R, Gupta A, Xiang W. Introducing Manganese Complexes as Redox Mediators for Dye-Sensitized Solar Cells[J]. Phys Chem Chem Phys, 2014,16:12021-12028. doi: 10.1039/c3cp54894e

    55. [55]

      Zhang Z G, Qi B, Jin Z. Perylene Diimides:A Thickness-Insensitive Cathode Interlayer for High Performance Polymer Solar Cells[J]. Energy Environ Sci, 2014,7:1966-1973. doi: 10.1039/c4ee00022f

    56. [56]

      Wu Y, Yang H, Zou Y. A New Dialkylthio-Substituted Naphtho[2, 3-c]thiophene-4, 9-dione Based Polymer Donorfor High-Performance Polymer Solar Cells[J]. Energy Environ Sci, 2019,12(2):675-683. doi: 10.1039/C8EE03608J

    57. [57]

      Guo B, Li W, Guo X. High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area[J]. Adv Mater, 2017,29(36)1702291. doi: 10.1002/adma.201702291

    58. [58]

      Fan Q, Wang Y, Zhang M. High-Performance As-Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency[J]. Adv Mater, 2018,30(6)1704546. doi: 10.1002/adma.201704546

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(3)
  • Abstract views(577)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return