Citation: HU Xueyi, LUO Minmin, FANG Yun, LI Junguo, SUN Yang, LI Huashan. A Comparative Study on the Formation of Nitrosamines of Ethanolamines[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 1061-1068. doi: 10.11944/j.issn.1000-0518.2019.09.190029 shu

A Comparative Study on the Formation of Nitrosamines of Ethanolamines

  • Corresponding author: FANG Yun, yunfang@126.com
  • Received Date: 25 January 2019
    Revised Date: 21 March 2019
    Accepted Date: 10 April 2019

    Fund Project: Supported by the National Key Research and Development Plan of China(No.2017YFB0308904)the National Key Research and Development Plan of China No.2017YFB0308904

Figures(5)

  • To investigate the reasonability and feasibility to substitute fatty acid diethanolamide by monoethanolamide and methylethanolamide in surfactant production and application, the nitrosation of methylethanolamine or monoethanolamine was compared with diethanolamine. In this study, nitrosamines were prepared from three ethanolamines by nitrosating agents of both tert-butyl nitrite and nitrous acid. The products of nitrosation by tert-butyl nitrite were identified to reveal nitrosation mechanisms, while the yields of the nitrosamines formed by nitrous acid were used to evaluate the easiness of nitrosation among three ethanolamines. Mechanism analysis of nitrosation shows that diethanolamine or methylethanolamine forms the corresponding nitrosamines, while monoethanolamine solely forms trace amount of N-nitroso-diethanolamine owing to the formation of intermediate diethanolamine by disproportionation of monoethanolamine. The experimental results also reveal that methylethanolamine and monoethanolamine are more difficult to form nitrosamines than diethanolamine. Therefore, it is reasonable and feasible to substitute fatty acid diethanolamide by monoethanolamide and methylethanolamide in surfactant production and application, which has theoretical and practical significance for safeguarding human health and safety.
  • 加载中
    1. [1]

      ZHAN Li, ZHAN Lishi, WAN Li. In vivo Micronuclei and Gene Mutation Induced by DEN in the lacZ Transgenic Mouse[J]. J Hygiene Res, 2005,34(3):269-271. doi: 10.3969/j.issn.1000-8020.2005.03.005

    2. [2]

      HUI Zhiyu, XU Yang, ZHU Jianhua. Removal of N-Nitrosamine from Cigarette Smoke by Zeolite[J]. Chinese J Appl Chem, 2002,19(3):276-279. doi: 10.3969/j.issn.1000-0518.2002.03.017 

    3. [3]

      Seweryn A, Wasilewski T, Bujak T. Effect of Salt on the Manufacturing and Properties of Hand Dishwashing Liquids in the Coacervate Form[J]. Ind Eng Chem Res, 2016,55(4):1134-1141. doi: 10.1021/acs.iecr.5b04048

    4. [4]

      Sikora E, Sliwa K, Ogonowki J. Study of Properties of Shampoos Containing Whey of Cow Milk[J]. SOFW J, 2011,137(6):14-20.  

    5. [5]

      Abd R M, Nour A H, Sulaiman A Z. Kinetic Stability and Rheology of Water-in-Crude Oil Emulsion Stabilized by Cocamide at Different Water Volume Fractions[J]. Int J Chem Eng Appl, 2014,5(2):204-209.

    6. [6]

      Wasilewski T. Coacervates as a Modern Delivery System of Hand Dishwashing Liquids[J]. J Surfactants Deterg, 2010,13(4):513-520. doi: 10.1007/s11743-010-1189-4

    7. [7]

      Program N T. Toxicology and Carcinogenesis Studies of Coconut Oil Acid Diethanolamine Condensate(CAS No. 68603-42-9) in F344/N Rats and B6C3F1 Mice(Dermal Studies)[J]. NTP Tech Rep, 2001,479:5-226.  

    8. [8]

      Havery D C, Chou H J. Nitrosamines in Sunscreens and Cosmetic Products[C]. ACS Symp Ser, 1994.

    9. [9]

      Andersen F A. Amended Final Report on the Safety Assessment of Cocamide DEA[J]. J Am Coll Toxicol, 1996,15(6):527-542. doi: 10.3109/10915819609008729

    10. [10]

      Fiume M M, Heldreth B, Bergfeld W F. Safety Assessment of Diethanolamides as Used in Cosmetics[J]. Int J Toxicol, 2013,32(3 Suppl):36S-58S.

    11. [11]

      HUANG Xiaodong, LI Yuhong, DAI Congjie. Evaluation in vitro of Scavenging Effect on Nitrite and Interdicting Effect on Nitrosamine Synthesis of Extract from Aegiceras corniculatum[J]. J Chinese Inst Food Sci Tech, 2015,15(9):15-22.  

    12. [12]

      LI ling, ZHANG Cuan, ZHOU Guanghong. Effects of Polyphenols on the Nitrite Scavenging and N-Nitrosamine Formation in Simulated Gastric Acid[J]. J Nanjing Agric Univ, 2013,36(3):111-116. doi: 10.7685/j.issn.1000-2030.2013.03.019

    13. [13]

      Dai N, Mitch W A. Influence of Amine Structural Characteristics on N-Nitrosamine Formation Potential Relevant to Postcombustion CO2 Capture Systems[J]. Environ Sci Technol, 2013,47(22):13175-13183. doi: 10.1021/es4035396

    14. [14]

      Sun Z, Liu Y D, Zhong R. Theoretical Investigation of Reactivities of Amines in the N-Nitrosation Reactions by N2O3[J]. J Mol Model, 2011,17(4):669-680. doi: 10.1007/s00894-010-0750-4

    15. [15]

      Abedi G, Talebpour Z. Modified QuEChERS as a Novel Sample Preparation Method for Analysis of N-Nitrosodiethanolamine in Shampoo by High Performance Liquid Chromatography[J]. Anal Methods, 2017,9(35):5165-5173. doi: 10.1039/C7AY01378G

    16. [16]

      Bhangare R C, Sahu S K, Pandit G G. Nitrosamines in Seafood and Study on the Effects of Storage in Refrigerator[J]. J Food Sci Technol, 2013,52(1):507-513.  

    17. [17]

      Lim D S, Roh T H, Kim M K. Risk Assessment of N-Nitrosodiethylamine(NDEA) and N-Nitrosodiethanolamine(NDELA) in Cosmetics[J]. J Toxicol Environ Health, Part A, 2018,81(12):465-480. doi: 10.1080/15287394.2018.1460782

    18. [18]

      Sabate C M, Delalu H. Synthesis and Characterization of Secondary Nitrosamines from Secondary Amines Using Sodium Nitrite and p-Toluenesulfonic Acid[J]. Chem Asian J, 2015,10(3):674-678. doi: 10.1002/asia.201403182

    19. [19]

      Sakai N, Sasaki M, Ogiwara Y. Copper(Ⅱ)-Catalyzed Oxidative N-nitrosation of Secondary and Tertiary Amines with Nitromethane under an Oxygen Atmosphere[J]. Chem Commun(Cambridge U K), 2015,51(58):11638-11641. doi: 10.1039/C5CC03675E

    20. [20]

      Chaudhary P, Gupta S, Muniyappan N. An Efficient Synthesis of N-Nitrosamines under Solvent, Metal and Acid Free Conditions Using tert-Butyl Nitrite[J]. Green Chem, 2016,18(8):2323-2330. doi: 10.1039/C5GC02880A

    21. [21]

      Hsu J, Arcot J, Alice Lee N. Nitrate and Nitrite Quantification from Cured Meat and Vegetables and Their Estimated Dietary Intake in Australians[J]. Food Chem, 2009,115(1):334-339. doi: 10.1016/j.foodchem.2008.11.081

    22. [22]

      Goudarziafshar H, Ghorbani-Choghamarani A, Hadian L. N-Nitrosation of Secondary Amines Using Supported Perchloric Acid on Silica Gel and Stereoselectivity Study of Nitroso Products[J]. J Chinese Chem Soc, 2013,60(10):1272-1276. doi: 10.1002/jccs.201300136

    23. [23]

      Lazny R, Nodzewska A, Wolosewicz K. New Simple Polymeric Supports with Hydrazone Linkers for Solid-Phase Synthesis of Ketones and Primary Amines[J]. Synthesis, 2003,18(18):2858-2864.  

    24. [24]

      Zhang J, Jiang J, Li Y. Iodide-Catalyzed Synthesis of N-Nitrosamines via C-N Cleavage of Nitromethane[J]. J Org Chem, 2013,78(22):11366-11372. doi: 10.1021/jo401915t

    25. [25]

      Ridd J H. Nitrosation, Diazotisation, and Deamination[J]. Q Rev Chem Soc, 1961,15(4):418-441. doi: 10.1039/qr9611500418

    26. [26]

      Da Silva E F, Lepaumier H, Grimstvedt A. Understanding 2-Ethanolamine Degradation in Postcombustion CO2 Capture[J]. Ind Eng Chem Res, 2012,51(41):13329-13338. doi: 10.1021/ie300718a

    27. [27]

      Fan T Y, Tannenbaum S R. Factors Influencing the Rate of Formation of Nitrosomorpholine from Morpholine and Nitrite:Acceleration by Thiocyanate and other Anions[J]. J Agric Food Chem, 1973,21(2):237-240. doi: 10.1021/jf60186a006

    28. [28]

      Mirvish S S. Kinetics of Dimethylamine Nitrosation in Relation to Nitrosamine Carcinogenesis[J]. J Natl Cancer Inst, 1970,44(3):633-639.  

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

Metrics
  • PDF Downloads(6)
  • Abstract views(619)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return