Citation: ZHANG Shouyan, HU Jianglei, SHI Xincui, ZHANG Peibiao, ITO Yoshihiro. Preparation of Electroactive and Bioactive DOPA-Jointed Insulin-Like Growth Factor-1@Poly(glycolide-lactide)/Poly(3-hexylthiophene) Electrospinning Fiber and Its Application in Neural Tissue Engineering[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 1003-1014. doi: 10.11944/j.issn.1000-0518.2019.09.190027 shu

Preparation of Electroactive and Bioactive DOPA-Jointed Insulin-Like Growth Factor-1@Poly(glycolide-lactide)/Poly(3-hexylthiophene) Electrospinning Fiber and Its Application in Neural Tissue Engineering

  • Corresponding author: HU Jianglei, hujl863@163.com SHI Xincui, xcsh@ciac.ac.cn ZHANG Peibiao, zhangpb@ciac.ac.cn
  • Received Date: 25 January 2019
    Revised Date: 26 March 2019
    Accepted Date: 24 April 2019

    Fund Project: Supported by the Program of Scientific Development of Jilin Province(No.20170520141JH)the Program of Scientific Development of Jilin Province 20170520141JH

Figures(8)

  • An ideal biomaterial for nerve repair should have the properties of similar electrical properties to normal nerve, biomimetic extracellular matrix structure and the release of specific growth factors. In this study, composite fibers with electroactive and bionic structures were prepared by electrospinning process by incorporating various mass fractions(0, 3%, 5%, 10%) poly(3-hexylthiophene)(P3HT) into the poly(glycolide-lactide)(PLGA) polymer. DOPA-jointed insulin-like growth factor-1(DOPA-IGF-1) with different concentrations(10, 50, 100 ng/mL) was bound to the fiber surface using tyrosine hydroxylase to achieve long-term and stable release of growth factor. The fiber diameter and surface hydrophilic properties of the material were characterized by scanning electron microscopy and contact angle measurement, respectively. The biocompatibility and bioactivity of the fibers in vitro were evaluated by cell culture and fluorescence staining experiments. It was found that the electroactive fiber could effectively promote the proliferation of rat adrenal pheochromocytoma cells(PC12 cells), and PLGA/P3HT-5% fiber showed better cell responsiveness. Fibers incorporated with DOPA-IGF-1 with a concentration of 10 ng/mL were more conducive to PC12 cell adhesion and growth. The results showed that DOPA-IGF-1@PLGA/P3HT with both electrical and biological activity had potential application in neural tissue repair.
  • 加载中
    1. [1]

      Wu Y, Wang L, Hu T. Conductive Micropatterned Polyurethane Films as Tissue Engineering Scaffolds for Schwann Cells and PC12 Cells[J]. J Colloid Interface Sci, 2018,518:252-262. doi: 10.1016/j.jcis.2018.02.036

    2. [2]

      Won S M, Song E, Zhao J. Recent Advances in Materials, Devices, and Systems for Neural Interfaces[J]. Adv Mater, 2018,30(30)e1800534. doi: 10.1002/adma.201800534

    3. [3]

      Spearman B S, Desai V H, Mobini S. Tissue-Engineered Peripheral Nerve Interfaces[J]. Adv Funct Mater, 2017,28(12)1701713.  

    4. [4]

      Zhu W, Ye T, Lee S J. Enhanced Neural Stem Cell Functions in Conductive Annealed Carbon Nanofibrous Scaffolds with Electrical Stimulation[J]. Nanomed-Nanotechnol, 2017,14(7):2485-2494.

    5. [5]

      Arioz I, Erol O, Bakan G. Biocompatible Electroactive Tetra(Aniline)-Conjugated Peptide Nanofibers for Neural Differentiation[J]. ACS Appl Mater Interfaces, 2018,10(1):308-317. doi: 10.1021/acsami.7b16509

    6. [6]

      Gu X, Ding F, Williams D F. Neural Tissue Engineering Options for Peripheral Nerve Regeneration[J]. Biomaterials, 2014,35(24):6143-6156. doi: 10.1016/j.biomaterials.2014.04.064

    7. [7]

      Hsu C C, Serio A, Amdursky N. Fabrication of Hemin-Doped Serum Albumin-Based Fibrous Scaffolds for Neural Tissue Engineering Applications[J]. ACS Appl Mater Interfaces, 2018,10(6):5305-5317. doi: 10.1021/acsami.7b18179

    8. [8]

      Jing W, Ao Q, Wang L. Constructing Conductive Conduit with Conductive Fibrous Infilling for Peripheral Nerve Regeneration[J]. Chem Eng J, 2018,345:566-577. doi: 10.1016/j.cej.2018.04.044

    9. [9]

      Hajiali H, Contestabile A, Mele E. Influence of Topography of Nanofibrous Scaffolds on Functionality of Engineered Neural Tissue[J]. J Mater Chem B, 2018,6(6):930-939. doi: 10.1039/C7TB02969A

    10. [10]

      Lins L C, Wianny F, Livi S. Effect of Polyvinylidene Fluoride Electrospun Fiber Orientation on Neural Stem Cell Differentiation[J]. J Biomed Mater Res B, 2017,105(8):2376-2393. doi: 10.1002/jbm.b.33778

    11. [11]

      Yan L, Zhao B, Liu X. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation[J]. ACS Appl Mater Interfaces, 2016,8(11):6834-6840. doi: 10.1021/acsami.5b12843

    12. [12]

      Planellas M, Pérez-Madrigal M M, del Valle L J. Microfibres of Conducting Polythiophene and Biodegradable Poly(ester urea) for Scaffolds[J]. Polym Chem-UK, 2015,6(6):925-937. doi: 10.1039/C4PY01243G

    13. [13]

      He L, Shi Y, Han Q. Surface Modification of Electrospun Nanofibrous Scaffolds via Polysaccharide-Protein Assembly Multilayer for Neurite Outgrowth[J]. J Mater Chem A, 2012,22(26):13187-13196. doi: 10.1039/c2jm32332j

    14. [14]

      Xue J, Yang J, O'Connor D M. Differentiation of Bone Marrow Stem Cells into Schwann Cells for the Promotion of Neurite Outgrowth on Electrospun Fibers[J]. ACS Appl Mater Interfaces, 2017,9(14):12299-12310. doi: 10.1021/acsami.7b00882

    15. [15]

      Gopinathan J, Quigley A F, Bhattacharyya A. Preparation, Characterisation, and in Vitro Evaluation of Electrically Conducting Poly(varepsilon-caprolactone)-Based Nanocomposite Scaffolds Using PC12 Cells[J]. J Biomed Mater Res A, 2016,104(4):853-865. doi: 10.1002/jbm.a.35620

    16. [16]

      Sun B, Wu T, Wang J. Polypyrrole-Coated Poly(L-Lactic Acid-co-E-Caprolactone)/Silk Fibroin Nanofibrous Membranes Promoting Neural Cell Proliferation and Differentiation with Electrical Stimulation[J]. J Mater Chem B, 2016,4(41):6670-6679. doi: 10.1039/C6TB01710J

    17. [17]

      Yang M, Liang Y, Gui Q. Electroactive Biocompatible Materials for Nerve Cell Stimulation[J]. Mater Res Express, 2015,2(4)042001. doi: 10.1088/2053-1591/2/4/042001

    18. [18]

      Hardy J G, Lee J Y, Schmidt C E. Biomimetic Conducting Polymer-Based Tissue Scaffolds[J]. Curr Opin Biotechnol, 2013,24(5):847-854. doi: 10.1016/j.copbio.2013.03.011

    19. [19]

      Swager T M. 50th Anniversary Perspective:Conducting/Semiconducting Conjugated Polymers[J]. Macromolecules, 2017,50(13):4867-4886. doi: 10.1021/acs.macromol.7b00582

    20. [20]

      Mawad D, Artzy-Schnirman A, Tonkin J. Electroconductive Hydrogel Based on Functional Poly(ethylenedioxy Thiophene)[J]. Chem Mater, 2016,28(17):6080-6088. doi: 10.1021/acs.chemmater.6b01298

    21. [21]

      Koppes A N, Keating K W, McGregor A L. Robust Neurite Extension Following Exogenous Electrical Stimulation Within Single Walled Carbon Nanotube-Composite Hydrogels[J]. Acta Biomater, 2016,39:34-43. doi: 10.1016/j.actbio.2016.05.014

    22. [22]

      Weng B, Diao J, Xu Q. Bio-interface of Conducting Polymer-Based Materials for Neuroregeneration[J]. Adv Mater Interfaces, 2015,2(8)1500059. doi: 10.1002/admi.201500059

    23. [23]

      Nguyen H T, Sapp S, Wei C. Electric Field Stimulation Through a Biodegradable Polypyrrole-co-Polycaprolactone Substrate Enhances Neural Cell Growth[J]. J Biomed Mater Res A, 2014,102(8):2554-2564. doi: 10.1002/jbm.a.34925

    24. [24]

      Lin H A, Zhu B, Wu Y W. Dynamic Poly(3, 4-Ethylenedioxythiophene)s Integrate Low Impedance with Redox-Switchable Biofunction[J]. Adv Funct Mater, 2018,281703890. doi: 10.1002/adfm.201703890

    25. [25]

      Xu H, Holzwarth J M, Yan Y. Conductive Ppy/Pdlla Conduit for Peripheral Nerve Regeneration[J]. Biomaterials, 2014,35(1):225-235. doi: 10.1016/j.biomaterials.2013.10.002

    26. [26]

      Shi X, Sui A, Wang Y. Controlled Synthesis of High Molecular Weight Poly(3-Hexylthiophene)s via Kumada Catalyst Transfer Polycondensation with Ni(IPr)(acac)2 as the Catalyst[J]. Chem Commun, 2015,51(11):2138-2140. doi: 10.1039/C4CC08012B

    27. [27]

      Lee J Y, Bashur C A, Goldstein A S. Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications[J]. Biomaterials, 2009,30(26):4325-4335. doi: 10.1016/j.biomaterials.2009.04.042

    28. [28]

      Monkare J, Pontier M, van Kampen E E M. Development of PLGA Nanoparticle Loaded Dissolving Microneedles and Comparison with Hollow Microneedles in Intradermal Vaccine Delivery[J]. Eur J Pharm Biopharm, 2018,129:111-121. doi: 10.1016/j.ejpb.2018.05.031

    29. [29]

      Zhu Y, Wang Z, Zhou H. An Injectable Hydroxyapatite/Poly(Lactide-co-Glycolide) Composite Reinforced by Micro/Nano-Hybrid Poly(glycolide) Fibers for Bone Repair[J]. Mat Sci Eng C-Mater, 2017,80:326-334. doi: 10.1016/j.msec.2017.04.121

    30. [30]

      Danhier F, Ansorena E, Silva J M. PLGA-Based Nanoparticles:An Overview of Biomedical Applications[J]. J Control Release, 2012,161(2):505-522. doi: 10.1016/j.jconrel.2012.01.043

    31. [31]

      Quiroga S, Bisbal M, Caceres A. Regulation of Plasma Membrane Expansion During Axon Formation[J]. Dev Neurobiol, 2018,78(3):170-180. doi: 10.1002/dneu.22553

    32. [32]

      Liang L, Wang J, Yuan Y. Micrna-320 Facilitates the Brain Parenchyma Injury via Regulating IGF-1 During Cerebral I/R Injury in Mice[J]. Bimed Pharmacother, 2018,102:86-93. doi: 10.1016/j.biopha.2018.03.036

    33. [33]

      Costales J, Kolevzon A. The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders[J]. Neurosci Biobehav R, 2016,63:207-222. doi: 10.1016/j.neubiorev.2016.01.001

    34. [34]

      O'Kusky J, Ye P. Neurodevelopmental Effects of Insulin-Like Growth Factor Signaling[J]. Front Neuroendocrin, 2012,33(3):230-251. doi: 10.1016/j.yfrne.2012.06.002

    35. [35]

      Gao T, Zhang N, Wang Z. Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and Nano-Hydroxyapatite Decorated with IGF-1 via Polydopamine Coating for Enhancing Cell Proliferation and Osteogenic Differentiation[J]. Macromol Biosci, 2015,15(8):1070-1080. doi: 10.1002/mabi.201500069

    36. [36]

      Zhang Y, Wang Z, Wang Y. A Novel Approach via Surface Modification of Degradable Polymers with Adhesive Dopa-IGF-1 for Neural Tissue Engineering[J]. J Pharm Sci-US, 2019,108(1):551-562. doi: 10.1016/j.xphs.2018.10.008

    37. [37]

      Arasoglu T, Derman S, Mansuroglu B. Synthesis, Characterization and Antibacterial Activity of Juglone Encapsulated PLGA Nanoparticles[J]. J Appl Microbiol, 2017,123(6):1407-1419. doi: 10.1111/jam.13601

    38. [38]

      Sun Y, Li H, Lin Y. Integration of Poly(3-Hexylthiophene) Conductive Stripe Patterns with 3D Tubular Structures for Tissue Engineering Applications[J]. RSC Adv, 2016,6(76):72519-72524. doi: 10.1039/C6RA14109A

    39. [39]

      Xu L, Chen S, Lu X. Electrochemically Tunable Cell Adsorption on a Transparent and Adhesion-Switchable Superhydrophobic Polythiophene Film[J]. Macromol Rapid Comm, 2015,36(12):1205-1210. doi: 10.1002/marc.201500102

    40. [40]

      Li L, Ge J, Wang L. Electroactive Nanofibrous Biomimetic Scaffolds by Thermally Induced Phase Separation[J]. J Mater Chem B, 2014,2(36):6119-6130. doi: 10.1039/C4TB00493K

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

Metrics
  • PDF Downloads(5)
  • Abstract views(657)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return