-
[1]
Wu Y, Wang L, Hu T. Conductive Micropatterned Polyurethane Films as Tissue Engineering Scaffolds for Schwann Cells and PC12 Cells[J]. J Colloid Interface Sci,
2018,518:252-262.
doi: 10.1016/j.jcis.2018.02.036
-
[2]
Won S M, Song E, Zhao J. Recent Advances in Materials, Devices, and Systems for Neural Interfaces[J]. Adv Mater,
2018,30(30)e1800534.
doi: 10.1002/adma.201800534
-
[3]
Spearman B S, Desai V H, Mobini S. Tissue-Engineered Peripheral Nerve Interfaces[J]. Adv Funct Mater,
2017,28(12)1701713.
-
[4]
Zhu W, Ye T, Lee S J. Enhanced Neural Stem Cell Functions in Conductive Annealed Carbon Nanofibrous Scaffolds with Electrical Stimulation[J]. Nanomed-Nanotechnol,
2017,14(7):2485-2494.
-
[5]
Arioz I, Erol O, Bakan G. Biocompatible Electroactive Tetra(Aniline)-Conjugated Peptide Nanofibers for Neural Differentiation[J]. ACS Appl Mater Interfaces,
2018,10(1):308-317.
doi: 10.1021/acsami.7b16509
-
[6]
Gu X, Ding F, Williams D F. Neural Tissue Engineering Options for Peripheral Nerve Regeneration[J]. Biomaterials,
2014,35(24):6143-6156.
doi: 10.1016/j.biomaterials.2014.04.064
-
[7]
Hsu C C, Serio A, Amdursky N. Fabrication of Hemin-Doped Serum Albumin-Based Fibrous Scaffolds for Neural Tissue Engineering Applications[J]. ACS Appl Mater Interfaces,
2018,10(6):5305-5317.
doi: 10.1021/acsami.7b18179
-
[8]
Jing W, Ao Q, Wang L. Constructing Conductive Conduit with Conductive Fibrous Infilling for Peripheral Nerve Regeneration[J]. Chem Eng J,
2018,345:566-577.
doi: 10.1016/j.cej.2018.04.044
-
[9]
Hajiali H, Contestabile A, Mele E. Influence of Topography of Nanofibrous Scaffolds on Functionality of Engineered Neural Tissue[J]. J Mater Chem B,
2018,6(6):930-939.
doi: 10.1039/C7TB02969A
-
[10]
Lins L C, Wianny F, Livi S. Effect of Polyvinylidene Fluoride Electrospun Fiber Orientation on Neural Stem Cell Differentiation[J]. J Biomed Mater Res B,
2017,105(8):2376-2393.
doi: 10.1002/jbm.b.33778
-
[11]
Yan L, Zhao B, Liu X. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation[J]. ACS Appl Mater Interfaces,
2016,8(11):6834-6840.
doi: 10.1021/acsami.5b12843
-
[12]
Planellas M, Pérez-Madrigal M M, del Valle L J. Microfibres of Conducting Polythiophene and Biodegradable Poly(ester urea) for Scaffolds[J]. Polym Chem-UK,
2015,6(6):925-937.
doi: 10.1039/C4PY01243G
-
[13]
He L, Shi Y, Han Q. Surface Modification of Electrospun Nanofibrous Scaffolds via Polysaccharide-Protein Assembly Multilayer for Neurite Outgrowth[J]. J Mater Chem A,
2012,22(26):13187-13196.
doi: 10.1039/c2jm32332j
-
[14]
Xue J, Yang J, O'Connor D M. Differentiation of Bone Marrow Stem Cells into Schwann Cells for the Promotion of Neurite Outgrowth on Electrospun Fibers[J]. ACS Appl Mater Interfaces,
2017,9(14):12299-12310.
doi: 10.1021/acsami.7b00882
-
[15]
Gopinathan J, Quigley A F, Bhattacharyya A. Preparation, Characterisation, and in Vitro Evaluation of Electrically Conducting Poly(varepsilon-caprolactone)-Based Nanocomposite Scaffolds Using PC12 Cells[J]. J Biomed Mater Res A,
2016,104(4):853-865.
doi: 10.1002/jbm.a.35620
-
[16]
Sun B, Wu T, Wang J. Polypyrrole-Coated Poly(L-Lactic Acid-co-E-Caprolactone)/Silk Fibroin Nanofibrous Membranes Promoting Neural Cell Proliferation and Differentiation with Electrical Stimulation[J]. J Mater Chem B,
2016,4(41):6670-6679.
doi: 10.1039/C6TB01710J
-
[17]
Yang M, Liang Y, Gui Q. Electroactive Biocompatible Materials for Nerve Cell Stimulation[J]. Mater Res Express,
2015,2(4)042001.
doi: 10.1088/2053-1591/2/4/042001
-
[18]
Hardy J G, Lee J Y, Schmidt C E. Biomimetic Conducting Polymer-Based Tissue Scaffolds[J]. Curr Opin Biotechnol,
2013,24(5):847-854.
doi: 10.1016/j.copbio.2013.03.011
-
[19]
Swager T M. 50th Anniversary Perspective:Conducting/Semiconducting Conjugated Polymers[J]. Macromolecules,
2017,50(13):4867-4886.
doi: 10.1021/acs.macromol.7b00582
-
[20]
Mawad D, Artzy-Schnirman A, Tonkin J. Electroconductive Hydrogel Based on Functional Poly(ethylenedioxy Thiophene)[J]. Chem Mater,
2016,28(17):6080-6088.
doi: 10.1021/acs.chemmater.6b01298
-
[21]
Koppes A N, Keating K W, McGregor A L. Robust Neurite Extension Following Exogenous Electrical Stimulation Within Single Walled Carbon Nanotube-Composite Hydrogels[J]. Acta Biomater,
2016,39:34-43.
doi: 10.1016/j.actbio.2016.05.014
-
[22]
Weng B, Diao J, Xu Q. Bio-interface of Conducting Polymer-Based Materials for Neuroregeneration[J]. Adv Mater Interfaces,
2015,2(8)1500059.
doi: 10.1002/admi.201500059
-
[23]
Nguyen H T, Sapp S, Wei C. Electric Field Stimulation Through a Biodegradable Polypyrrole-co-Polycaprolactone Substrate Enhances Neural Cell Growth[J]. J Biomed Mater Res A,
2014,102(8):2554-2564.
doi: 10.1002/jbm.a.34925
-
[24]
Lin H A, Zhu B, Wu Y W. Dynamic Poly(3, 4-Ethylenedioxythiophene)s Integrate Low Impedance with Redox-Switchable Biofunction[J]. Adv Funct Mater,
2018,281703890.
doi: 10.1002/adfm.201703890
-
[25]
Xu H, Holzwarth J M, Yan Y. Conductive Ppy/Pdlla Conduit for Peripheral Nerve Regeneration[J]. Biomaterials,
2014,35(1):225-235.
doi: 10.1016/j.biomaterials.2013.10.002
-
[26]
Shi X, Sui A, Wang Y. Controlled Synthesis of High Molecular Weight Poly(3-Hexylthiophene)s via Kumada Catalyst Transfer Polycondensation with Ni(IPr)(acac)2 as the Catalyst[J]. Chem Commun,
2015,51(11):2138-2140.
doi: 10.1039/C4CC08012B
-
[27]
Lee J Y, Bashur C A, Goldstein A S. Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications[J]. Biomaterials,
2009,30(26):4325-4335.
doi: 10.1016/j.biomaterials.2009.04.042
-
[28]
Monkare J, Pontier M, van Kampen E E M. Development of PLGA Nanoparticle Loaded Dissolving Microneedles and Comparison with Hollow Microneedles in Intradermal Vaccine Delivery[J]. Eur J Pharm Biopharm,
2018,129:111-121.
doi: 10.1016/j.ejpb.2018.05.031
-
[29]
Zhu Y, Wang Z, Zhou H. An Injectable Hydroxyapatite/Poly(Lactide-co-Glycolide) Composite Reinforced by Micro/Nano-Hybrid Poly(glycolide) Fibers for Bone Repair[J]. Mat Sci Eng C-Mater,
2017,80:326-334.
doi: 10.1016/j.msec.2017.04.121
-
[30]
Danhier F, Ansorena E, Silva J M. PLGA-Based Nanoparticles:An Overview of Biomedical Applications[J]. J Control Release,
2012,161(2):505-522.
doi: 10.1016/j.jconrel.2012.01.043
-
[31]
Quiroga S, Bisbal M, Caceres A. Regulation of Plasma Membrane Expansion During Axon Formation[J]. Dev Neurobiol,
2018,78(3):170-180.
doi: 10.1002/dneu.22553
-
[32]
Liang L, Wang J, Yuan Y. Micrna-320 Facilitates the Brain Parenchyma Injury via Regulating IGF-1 During Cerebral I/R Injury in Mice[J]. Bimed Pharmacother,
2018,102:86-93.
doi: 10.1016/j.biopha.2018.03.036
-
[33]
Costales J, Kolevzon A. The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders[J]. Neurosci Biobehav R,
2016,63:207-222.
doi: 10.1016/j.neubiorev.2016.01.001
-
[34]
O'Kusky J, Ye P. Neurodevelopmental Effects of Insulin-Like Growth Factor Signaling[J]. Front Neuroendocrin,
2012,33(3):230-251.
doi: 10.1016/j.yfrne.2012.06.002
-
[35]
Gao T, Zhang N, Wang Z. Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and Nano-Hydroxyapatite Decorated with IGF-1 via Polydopamine Coating for Enhancing Cell Proliferation and Osteogenic Differentiation[J]. Macromol Biosci,
2015,15(8):1070-1080.
doi: 10.1002/mabi.201500069
-
[36]
Zhang Y, Wang Z, Wang Y. A Novel Approach via Surface Modification of Degradable Polymers with Adhesive Dopa-IGF-1 for Neural Tissue Engineering[J]. J Pharm Sci-US,
2019,108(1):551-562.
doi: 10.1016/j.xphs.2018.10.008
-
[37]
Arasoglu T, Derman S, Mansuroglu B. Synthesis, Characterization and Antibacterial Activity of Juglone Encapsulated PLGA Nanoparticles[J]. J Appl Microbiol,
2017,123(6):1407-1419.
doi: 10.1111/jam.13601
-
[38]
Sun Y, Li H, Lin Y. Integration of Poly(3-Hexylthiophene) Conductive Stripe Patterns with 3D Tubular Structures for Tissue Engineering Applications[J]. RSC Adv,
2016,6(76):72519-72524.
doi: 10.1039/C6RA14109A
-
[39]
Xu L, Chen S, Lu X. Electrochemically Tunable Cell Adsorption on a Transparent and Adhesion-Switchable Superhydrophobic Polythiophene Film[J]. Macromol Rapid Comm,
2015,36(12):1205-1210.
doi: 10.1002/marc.201500102
-
[40]
Li L, Ge J, Wang L. Electroactive Nanofibrous Biomimetic Scaffolds by Thermally Induced Phase Separation[J]. J Mater Chem B,
2014,2(36):6119-6130.
doi: 10.1039/C4TB00493K