Citation: LIU Bing, GONG Huili, LIU Rui, HU Changwen. One-Step Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 1076-1084. doi: 10.11944/j.issn.1000-0518.2019.09.190017 shu

One-Step Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution

  • Corresponding author: LIU Bing, liubing7100@126.com
  • Received Date: 22 January 2019
    Revised Date: 4 March 2019
    Accepted Date: 8 April 2019

Figures(11)

  • Titanium powders as the reductant and HAuCl4 were used as the oxidant to prepare TiO2-Au composite in the hydrothermal reactor at 180℃. Finally, the surface of TiO2 with 800 nm diameter was evenly coated by gold nanoparticles with 20 nm diameter. The specific surface area is about 3.5 m2/g. The structures and properties of the samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), X-ray photoelectron spectroscopy(XPS), ultraviolet-visible diffuse reflectance spectroscopy, photocurrent density and photocatalytic hydrogen production performance. The morphology of the catalyst synthesized by the one-step method is regular. The final TiO2 is anatase. The catalyst has a strong absorption in the visible region, benefitting from the local surface plasmon resonance(LSPR) of gold nanoparticles. The hydrogen production performance of the catalyst increases firstly and then decreases with the increase of Au. Under visible light, the maximum hydrogen production rate is 0.1 μmol/(g·h) and the photocatalyst has good stability.
  • 加载中
    1. [1]

      Carrette L, Friedrieh K A, Stimming U. Fuel Cells:Principles, Types, Fuels, and Applications[J]. Chem Phys, 2000,1:162-193.  

    2. [2]

      Tada H, Teranishi K, Inubushi Y. Ag Nanocluster Loading Effect an TiO2 Photocatalytic Reduction of Bis(2-bipyridyl)disulfide to 2-Mercaptopyridine by H2O[J]. Langmuir, 2000,16(7):3304-330. doi: 10.1021/la991315z

    3. [3]

      Naoi K, Ohko Y, Tatsuma T. TiO2 Films Loaded with Silver Nanoparticles:Control of Multicolor Photochromic Behavior[J]. J Am Chem Soc, 2004,126(11):3664-366. doi: 10.1021/ja039474z

    4. [4]

      Subramanian V, Wolf E E, Kamat P V. Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles[J]. Langmuir, 2003,19(2):469-474. doi: 10.1021/la026478t

    5. [5]

      He J H, Ichinose I, Kunitake T. Facile Fabrication of Ag-Pd Bimetallic Nanoparticles in Ultrathin TiO2-gel Films:Nanoparticle Morphology and Catalytic Activity[J]. J Am Chem Soc, 2003,125(36):11034-1104. doi: 10.1021/ja035970b

    6. [6]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(S8):37-38.  

    7. [7]

      GAO Lian, ZHENG Shan, ZHANG Qinghong. Photocatalytic Material of Nano-Titanium Oxide and Its Application[M]. Beijing:Chemical Industry Press, 2002(in Chinese).

    8. [8]

      Ho W, Yu C Y, Lee S. Synthesis of Hierarchical Nanoporous F-doped TiO2 Spheres with Visible Light Photocatalytic Activity[J]. Chem Commun, 2006,10:1115-1117.  

    9. [9]

      Hamad S, Catlow C R A, Woodley S M. Structure and Stability of Small TiO2 Nanoparticles[J]. Small, 2005,1(8/9):812-816. doi: 10.1021/jp0521914

    10. [10]

      Li Y, Kunitake T, Fujikawa S. Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres[J]. J Phys Chem B, 2006,110:13000-13004. doi: 10.1021/jp061979z

    11. [11]

      Rengarajan R, Jiang P, Colvin V. Optical Properties of a Photonic Crystal of Hollow Spherical Shells[J]. Appl Phys Lett, 2000,77:3517-3519. doi: 10.1063/1.1320863

    12. [12]

      Jiang P, Bertone J F, Colvin V L. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals[J]. Science, 2001,291(5503):453-457. doi: 10.1126/science.291.5503.453

    13. [13]

      Caruso F, Caruso R A, Möhwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998,282:1111-1114. doi: 10.1126/science.282.5391.1111

    14. [14]

      Zhong Z Y, Yin Y D, Gates B. Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads[J]. Adv Mater, 2000,12:206-209. doi: 10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5

    15. [15]

      Caruso F, Shi X Y, Rachel A. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J]. Adv Mater, 2001,13:740-744. doi: 10.1002/1521-4095(200105)13:10<740::AID-ADMA740>3.0.CO;2-6

    16. [16]

      Imholf A. Preaparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shell[J]. Langmuir, 2001,17(12):3579-3585. doi: 10.1021/la001604j

    17. [17]

      Wang L, Sasaki T, Ebina Y. Fabrication of Controllable Ultrathin Hollow Shellsby Layer-by-Layer Assembly of Exfoliated Titania Nanosheets on Polymer Templates[J]. Chem Mater, 2002,14:4827-4832. doi: 10.1021/cm020685x

    18. [18]

      Cheng X J, Chen M, Wu L M. Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres[J]. Langmuir, 2006,22:385-386. doi: 10.1021/la051549k

    19. [19]

      Lia G C, Zhang Z K. Synsthesis of Submicrometer-Sized Hollow Titania Spheres with Controllable Shells[J]. Mater Lett, 2004,58:2768-2771. doi: 10.1016/j.matlet.2004.04.031

    20. [20]

      Shen W H, Zhu Y F, Dong X P. A New Strategy to Synthesize TiO2-Hollow Spheres Using Carbon Spheres as Template[J]. Chem Lett, 2005,34(6):840-841. doi: 10.1246/cl.2005.840

    21. [21]

      Li D G, Luo L L, Chen J F. Synthesis of Hollow Titania Using Nanosized Calcium Carbonate as a Template[J]. Chem Lett, 2005,34:138-140. doi: 10.1246/cl.2005.138

    22. [22]

      Sugimoto T, Zhou X, Muramatsu A. Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel-Sol Method:4.Shape Control[J]. J Colloid Interf Sci, 2003,259(1):53-61. doi: 10.1016/S0021-9797(03)00035-3

    23. [23]

      Shklover V, Nazeeruddin M K, Zakeeruddin S M. Structure of Nanocrystalline TiO2 Powders and Precursor to Their Highly Efficient Photosensitizer[J]. Chem Mater, 1997,9(2):430-439. doi: 10.1021/cm950502p

    24. [24]

      Burnside S D, Shklover V, Barbe C. Self-organization of TiO2 Nanoparticles in Thin films[J]. Chem Mater, 1998,10(9):2419-2425. doi: 10.1021/cm980702b

    25. [25]

      Lu S W, Harris C, Walck S. Phase Sensitivity of Raman Spectroscopy Analysis of CVD Titania Thin Films[J]. J Mater Sci, 2009,44(2):541-544. doi: 10.1007/s10853-008-3086-z

    26. [26]

      Hardwich L J, Holzapfel M, Novak P. Electrochemical Lithium Insertion into Anatase-type TiO2:An in Situ Raman Microscopy Investigation[J]. Electrochim Acta, 2007,52(17):5357-5367. doi: 10.1016/j.electacta.2007.02.050

    27. [27]

      Ohsaka T, Izumi F, Fujiki Y. Raman Spectrum of Anatase, TiO2[J]. J Raman Spectrosc, 1978,7(6):321-324. doi: 10.1002/jrs.1250070606

    28. [28]

      Miao L, Tanemura S, Toh S. Fabrication, Characterization and Raman Study of Anatase-TiO2 Nanorods by a Heating-sol-gel Template Process[J]. J Cryst Growth, 2004,264(1/2/3):246-252.  

    29. [29]

      Yang L, Jiang X, Ruan W. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles:Charge-Transfer Contributio[J]. J Phys Chem C, 2008,112(50):20095-20098. doi: 10.1021/jp8074145

    30. [30]

      Liu B, Boercker J E, Aydil E S. Oriented Single Crystalline Titanium Dioxide Nanowires[J]. Nanotechnology, 2008,19(50):505604-505610. doi: 10.1088/0957-4484/19/50/505604

    31. [31]

      SHI Erwei, CHEN Zhizhan, YUAN Rulin. Hydrothermal Crystallography[M]. Beijing:Science Press, 2004:86-106(in Chinese).

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

Metrics
  • PDF Downloads(2)
  • Abstract views(615)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return