Citation: CHE Tinghua, TAN Xiao, YAN Jiawei, SONG Fengdan, ZHANG Hongmei, QI Suitao. Synthesis of Copper Modified Porous Nickel Self-supported Electrode and Its Catalytic Oxidation of Glucose[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 1091-1098. doi: 10.11944/j.issn.1000-0518.2019.09.190005 shu

Synthesis of Copper Modified Porous Nickel Self-supported Electrode and Its Catalytic Oxidation of Glucose

  • Corresponding author: QI Suitao, suitaoqi@mail.xjtu.edu.cn
  • Received Date: 7 January 2019
    Revised Date: 13 March 2019
    Accepted Date: 29 April 2019

    Fund Project: Supported by the Fundamental Research Funds for the Central Universities(No.xjj2016045)the Fundamental Research Funds for the Central Universities xjj2016045

Figures(7)

  • Porous Ni(nickel foam, NF) self-supported electrodes modified by Cu2O/Cu were fabricated by hydrothermal method. Their morphology and structure were characterized by X-ray diffraction(XRD) and field-emission scanning electron microscopy(FESEM). The resulted surface of porous Ni is completely covered with octahedral Cu2O/Cu composites of different sizes. The maximum diameter of the octahedron is about 5 μm. The glucose catalytic oxidation activity of Cu2O/Cu-NF was measured by cyclic voltammetry and constant potential amperometric method in alkaline medium with three-electrode system. The results show that the Cu2O/Cu-NF fabricated at 150℃ has the strongest electrocatalytic activity. The linear relationship of response current and glucose concentration could be observed clearly in the range of 3.7×10-3~1.1 mmol/L and 1.4~5.0 mmol/L, with sensitivity of 6929 μA/(mmol·L-1·cm2) and 706.1 μA/(mmol·L-1·cm2), respectively. Satisfyingly, the Cu2O/Cu-NF electrode is successfully employed to eliminate the interferences from uric acid(UA), acid ascorbic(AA) and L-proline(L-P) during the catalytic oxidation of glucose. The response current of Cu2O/Cu-NF electrode for glucose electrocatalytic oxidation could reach 91.6% of the original current after one month. The Cu2O/Cu-NF electrode allows highly sensitive, excellently selective, stable, and fast amperometric sensing of glucose and thus is promising for the future development of nonenzymatic glucose sensors.
  • 加载中
    1. [1]

      Brouzgou A, Tsiakaras P. Electrocatalysts for Glucose Electrooxidation Reaction:A Review[J]. Top Catal, 2015,58(18):1-17.

    2. [2]

      BAI Hongyan, WANG Xiuhua, DAI Zhihui. Research Development of Non-enzymatic Glucose Detection[J]. Chinese J Appl Chem, 2012,29(6):611-615.  

    3. [3]

      Wang G F, He X P, Wang L L. Non-enzymatic Electrochemical Sensing of Glucose[J]. Microchim Acta, 2013,180(3):161-186. doi: 10.1007/s00604-012-0923-1

    4. [4]

      Su S, Lu Z W, Li J. MoS2-Au@Pt Nanohybrid as a Sensing Platform for Electrochemical Nonenzymatic Glucose Detection[J]. New J Chem, 2018,42(9):6750-6755. doi: 10.1039/C8NJ00940F

    5. [5]

      Ma L, Wang X Y, Zhang Q R. Pt Catalyzed Formation of a Ni@Pt/reduced Graphene Oxide Nanocomposite:Preparation and Electrochemical Sensing Application for Glucose Detection[J]. Anal Methods, 2018,10(31):3845-3850. doi: 10.1039/C8AY01275J

    6. [6]

      Meg as-Sayago C, Bobadilla L F, Ivanova S. Gold Catalyst Recycling Study in Base-free Glucose Oxidation Reaction[J]. Catal Today, 2017,301:72-77.  

    7. [7]

      Derrien E, Mounguenguidiallo M, Perret N. Aerobic Oxidation of Glucose to Glucaric Acid under Alkaline-Free Conditions:Au-Based Bimetallic Catalysts and Effect of Residues in a Hemicellulose Hydrolysate[J]. Ind Eng Chem Res, 2017,56(45):13176-13190. doi: 10.1021/acs.iecr.7b01571

    8. [8]

      Li F, Feng Y, Yang L M. A Selective Novel Non-enzyme Glucose Amperometric Biosensor Based on Lectin Sugar Binding on Thionine Modified Electrode[J]. Biosens Bioelectron, 2011,26(5):2489-2494. doi: 10.1016/j.bios.2010.10.040

    9. [9]

      Gough D A, Anderson F L, Giner J. Effect of Coreactants on Electrochemical Glucose Oxidation[J]. Anal Chem, 1978,50(7):941-944. doi: 10.1021/ac50029a029

    10. [10]

      Vassilyev Y B, Khazova O A, Nikolaeva N N J. Kinetics and Mechanism of Glucose Electrooxidation on Different Electrode-Catalysts:Part Ⅰ.Adsorption and Oxidation on Platinum[J]. Electroanal Chem, 1985,196(1):105-125. doi: 10.1016/0022-0728(85)85084-1

    11. [11]

      Guo C Y, Huo H H, Han X. Ni/CdS Bifunctional Ti@TiO2 Core Shell Nanowire Electrode for High-Performance Nonenzymatic Glucose Sensing[J]. Anal Chem, 2014,86(1):876-883. doi: 10.1021/ac4034467

    12. [12]

      Darvishi S, Souissi M, Kharaziha M. Gelatin Methacryloyl Hydrogel for Glucose Biosensing Using Ni Nanoparticles-Reduced Graphene Oxide:An Experimental and Modeling Study[J]. Electrochim Acta, 2018,261:275-283. doi: 10.1016/j.electacta.2017.12.126

    13. [13]

      Zhang Q, Luo Q, Qin Z B. Self-assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing[J]. ACS Omega, 2018,3(3):3420-3428. doi: 10.1021/acsomega.7b01197

    14. [14]

      Zhang Y, Zhao D Y, Zhu W X. Engineering Multi-stage Nickel Oxide Rod-On-Sheet Nanoarrays on Ni Foam:A Superior Catalytic Electrode for Ultrahigh-Performance Electrochemical Sensing of Glucos[J]. Sens Actuators B, 2018,255:416-423. doi: 10.1016/j.snb.2017.08.078

    15. [15]

      El-Refaei S M, Saleh M M, Awad M I. Enhanced Glucose Electrooxidation at a Binary Catalyst of Manganese and Nickel Oxides Modified Glassy Carbon Electrode[J]. J Power Sources, 2013,223:125-128. doi: 10.1016/j.jpowsour.2012.08.098

    16. [16]

      Amaniampong P N, Trinh Q T, Li K X. Porous Structured CuO-CeO2 Nanospheres for the Direct Oxidation of Cellobiose and Glucose to Gluconic Acid[J]. Catal Today, 2018,306:172-182. doi: 10.1016/j.cattod.2017.01.009

    17. [17]

      Xu D, Zhu C L, Meng X. Design and Fabrication of Ag-CuO Nanoparticles on Reduced Grapheme Oxide for Nonenzymatic Detection of Glucose[J]. Sens Actuators B, 2018,265:435-442. doi: 10.1016/j.snb.2018.03.086

    18. [18]

      Li Y C, Zhong Y M, Zhang Y Y. Carbon Quantum Dots/octahedral Cu2O Nanocomposites for Non-enzymatic Glucose and Hydrogen Peroxide Amperometric Sensor[J]. Sens Actuators B, 2015,206:735-743. doi: 10.1016/j.snb.2014.09.016

    19. [19]

      Khan R, Ahmad R, Rai P. Glucose-Assisted Synthesis of Cu2O Shuriken-Like Nanostructures and Their Application as Nonenzymatic Glucose Biosensors[J]. Sens Actuators B, 2014,203:471-476. doi: 10.1016/j.snb.2014.06.128

    20. [20]

      Hou C T, Xu Q, Yin L N. Metal-organic Framework Templated Synthesis of Co3O4 Nanoparticles for Direct Glucose and H2O2 Detection[J]. Analyst, 2012,137(24):5803-5808. doi: 10.1039/c2an35954e

    21. [21]

      Liu M M, Liu R, Chen W. Graphene wrapped Cu2O Nanocubes:Non-enzymatic Electrochemical Sensors for the Detection of Glucose and Hydrogen Peroxide with Enhanced Stability[J]. Biosens Bioelectron, 2013,45:206-212. doi: 10.1016/j.bios.2013.02.010

    22. [22]

      Kung C W, Cheng Y H, Ho K C. Single Layer of Nickel Hydroxide Nanoparticles Covered on a Porous Ni Foam and Its Application for Highly Sensitive Non-enzymatic Glucose Sensor[J]. Sens Actuators B, 2014,204:159-166. doi: 10.1016/j.snb.2014.07.102

    23. [23]

      Wang L, Xie Y Z, Wei C T. Hierarchical NiO Superstructures/Foam Ni Electrode Derived from Ni Metal-Organic Framework Flakes on Foam Ni for Glucose Sensing[J]. Electrochim Acta, 2015,174:846-852. doi: 10.1016/j.electacta.2015.06.086

    24. [24]

      Jafarian M, Forouzandeh F, Danaee I. Electrocatalytic Oxidation of Glucose on Ni and NiCu Alloy Modified Glassy Carbon Electrode[J]. J Solid State Electrochem, 2009,13(8):1171-1179. doi: 10.1007/s10008-008-0632-1

    25. [25]

      HAO Miaoqing. Performance and Mechanism of the Direct Biomass Alkaline Fuel Cell[D]. Tianjin: Tianjin University, 2013(in Chinese).

    26. [26]

      Dong C J, Tao Y, Chang Q. Direct Growth of MnCO3 on Ni Foil for a Highly Sensitive Nonenzymatic Glucose Sensor[J]. J Alloys Compd, 2018,762(25):216-221.  

    27. [27]

      Zhang H Y, Liu S. Nanoparticles-Assembled NiO Nanosheets Templated by Graphene Oxide Film for Highly Sensitive Non-enzymatic Glucose Sensing[J]. Sens Actuators B, 2017,238:788-794. doi: 10.1016/j.snb.2016.07.126

    28. [28]

      Fang B, Gu A X, Wang G F. Silver Oxide Nanowalls Grown on Cu Substrate as an Enzymeless Glucose Sensor[J]. ACS Appl Mater Interfaces, 2009,1(12):2829-2834. doi: 10.1021/am900576z

    29. [29]

      Wang M, Ma Z Z, Li J P. Well-dispersed Palladium Nanoparticles on Nickel-Phosphorus Nanosheets as Efficient Three-Dimensional Platform for Superior Catalytic Glucose Electro-oxidation and Non-enzymatic Sensing[J]. J Colloid Interface Sci, 2018,511(4):355-364.  

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(5)
  • Abstract views(1086)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return