Citation: LIU Bing, GONG Huili, LIU Rui, HU Changwen. Synthesis of TiO2 Coated Gold Nanorod with Core-Shell Structure and Its Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 939-948. doi: 10.11944/j.issn.1000-0518.2019.08.190004 shu

Synthesis of TiO2 Coated Gold Nanorod with Core-Shell Structure and Its Photocatalytic Hydrogen Evolution

  • Corresponding author: LIU Bing, liubing7100@126.com
  • Received Date: 7 January 2019
    Revised Date: 25 February 2019
    Accepted Date: 9 April 2019

Figures(13)

  • TiO2 coated gold nanorods with core-shell structure(GNR@TiO2) about 200 nm were synthesized by sol-gel process and hydrothermal method. After hydrothermal crystallization, the particle size of the material expands to 300 nm, while the morphology and the local surface plasmon resonance(LSPR) of GNR have no change. The structure and properties of the samples were characterized by X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), X-ray photoelectron spectroscopy(XPS), ultraviolet-visible absorption spectroscopy and photocatalytic hydrogen production. The results show that the hydrogen production rate of crystallized GNR@TiO2 is 31.0 μmol/(g·h) in the visible light range, which is much higher than that of 7.3 μmol/(g·h) before crystallization. Based on experimental result and finite difference time domain(FDTD) analysis, we proposed a photocatalytic mechanism for efficient hydrogen generation. LSPR promotes the visible light absorption. Anatase TiO2 enhances the electric field and promotes the photogenerated electron-hole separation. The crystallized TiO2 shell is porous and multi-mesoporous, which increases the active sites and is conducive to material transfer.
  • 加载中
    1. [1]

      Tong H, Ouyang S, Bi Y. Nano-Photocatalytic Materials:Possibilities and Challenges[J]. Adv Mater, 2012,24(2):229-251. doi: 10.1002/adma.201102752

    2. [2]

      Zhou H, Qu Y, Zeid T. Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures[J]. Energy Environ Sci, 2012,5:6732-6743. doi: 10.1039/c2ee03447f

    3. [3]

      Ma Y, Wang X, Jia Y. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev, 2014,114(19):9987-11043. doi: 10.1021/cr500008u

    4. [4]

      Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chem Rev, 1995,95:735-758. doi: 10.1021/cr00035a013

    5. [5]

      Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem Rev, 2007,107(7):2891-2959. doi: 10.1021/cr0500535

    6. [6]

      Silva C G, Juarez R, Marino T. Influence of Excitation Wavelength(UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen[J]. J Am Chem Soc, 2011,133(3):595-602. doi: 10.1021/ja1086358

    7. [7]

      Tachikawa T, Yonezawa T, Majima T. Super-Resolution Mapping of Reactive Sites on Titania-Based Nanoparticles with Water-Soluble Fluorogenic Probes[J]. ACS Nano, 2013,7(1):263-275. doi: 10.1021/nn303964v

    8. [8]

      Bian Z F, Tachikawa T, Zhang P. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity[J]. J Am Chem Soc, 2014,136(1):458-465. doi: 10.1021/ja410994f

    9. [9]

      Knight M W, Sobhani H, Nordlander P. Photodetection with Active Optical Antennas[J]. Science, 2011,332(6030):702-704. doi: 10.1126/science.1203056

    10. [10]

      Awazu K, Fujimaki M, Rockstuhl C. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide[J]. J Am Chem Soc, 2008,130(5):1676-1680. doi: 10.1021/ja076503n

    11. [11]

      Zhang Q, Lima D Q, Lee I. A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration[J]. Angew Chem Int Ed, 2011,50(31):7088-7092. doi: 10.1002/anie.201101969

    12. [12]

      Tada H, Mitsui T, Kiyonaga T. All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System[J]. Nat Mater, 2006,5:782-786. doi: 10.1038/nmat1734

    13. [13]

      Mubeen S, Lee J, Singh N. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons[J]. Nat Nanotechnol, 2013,8:247-251. doi: 10.1038/nnano.2013.18

    14. [14]

      Christopher P, Xin H L, Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures[J]. Nat Chem, 2011,3:467-472. doi: 10.1038/nchem.1032

    15. [15]

      Li G, Cherqui C, Bigelow N W. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS[J]. Nano Lett, 2015,15(5):3465-3471. doi: 10.1021/acs.nanolett.5b00802

    16. [16]

      Long R, Mao K, Gong M. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction Versus Plasmonic Effects[J]. Angew Chem Int Ed, 2014,126(12):3269-3273. doi: 10.1002/ange.201309660

    17. [17]

      Long R, Rao Z, Mao K. Efficient Coupling of Solar Energy to Catalytic Hydrogenation by Using Well-Designed Palladium Nanostructures[J]. Angew Chem Int Ed, 2015,54(8):2425-2430. doi: 10.1002/anie.201407785

    18. [18]

      Jiang R, Li B, Fang C. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater, 2014,26(31):5274-5309. doi: 10.1002/adma.201400203

    19. [19]

      Law M, Greene L E, Joh J C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photonics, 2014,8:95-103. doi: 10.1038/nphoton.2013.238

    20. [20]

      Murray W A, Barnes W L. Plasmonic Materials[J]. Adv Mater, 2007,19(22):3771-3782. doi: 10.1002/adma.200700678

    21. [21]

      Anker J N, Hall W P, Lyandres O. Biosensing with Plasmonic Nanosensors[J]. Nat Mater, 2008,7:442-453. doi: 10.1038/nmat2162

    22. [22]

      Pu Y C, Wang G, Chang K D. Au Nanostructure Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-Visible Region for Photoelectrochemical Water Splitting[J]. Nano Lett, 2013,13(8):3817-3823. doi: 10.1021/nl4018385

    23. [23]

      Liu L Q, Ouyang S X, Ye J. Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance[J]. Angew Chem Int Ed, 2013,125(26):6821-6825. doi: 10.1002/ange.201300239

    24. [24]

      Liu R, Sen A. Controlled Synthesis of Heterogeneous Metal-Titania Nanostructures and Their Applications[J]. J Am Chem Soc, 2012,134(42):17505-17512. doi: 10.1021/ja211932b

    25. [25]

      Fang C, Jia H, Chang S. (Gold Core)/(Titania Shell) Nanostructures for Plasmon-Enhanced Photon Harvesting and Generation of Reactive Oxygen Species[J]. Energy Environ Sci, 2014,7:3431-3438. doi: 10.1039/C4EE01787K

    26. [26]

      Ma X Y, Chen Z G, Hartono S B. Fabrication of Uniform Anatase TiO2 Particles Exposed by {001} Facets[J]. Chem Commun, 2010,46:6608-6610. doi: 10.1039/c0cc01473g

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    19. [19]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(3)
  • Abstract views(1003)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return