Synthesis of TiO2 Coated Gold Nanorod with Core-Shell Structure and Its Photocatalytic Hydrogen Evolution
- Corresponding author: LIU Bing, liubing7100@126.com
Citation:
LIU Bing, GONG Huili, LIU Rui, HU Changwen. Synthesis of TiO2 Coated Gold Nanorod with Core-Shell Structure and Its Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Applied Chemistry,
;2019, 36(8): 939-948.
doi:
10.11944/j.issn.1000-0518.2019.08.190004
Tong H, Ouyang S, Bi Y. Nano-Photocatalytic Materials:Possibilities and Challenges[J]. Adv Mater, 2012,24(2):229-251. doi: 10.1002/adma.201102752
Zhou H, Qu Y, Zeid T. Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures[J]. Energy Environ Sci, 2012,5:6732-6743. doi: 10.1039/c2ee03447f
Ma Y, Wang X, Jia Y. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev, 2014,114(19):9987-11043. doi: 10.1021/cr500008u
Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chem Rev, 1995,95:735-758. doi: 10.1021/cr00035a013
Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem Rev, 2007,107(7):2891-2959. doi: 10.1021/cr0500535
Silva C G, Juarez R, Marino T. Influence of Excitation Wavelength(UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen[J]. J Am Chem Soc, 2011,133(3):595-602. doi: 10.1021/ja1086358
Tachikawa T, Yonezawa T, Majima T. Super-Resolution Mapping of Reactive Sites on Titania-Based Nanoparticles with Water-Soluble Fluorogenic Probes[J]. ACS Nano, 2013,7(1):263-275. doi: 10.1021/nn303964v
Bian Z F, Tachikawa T, Zhang P. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity[J]. J Am Chem Soc, 2014,136(1):458-465. doi: 10.1021/ja410994f
Knight M W, Sobhani H, Nordlander P. Photodetection with Active Optical Antennas[J]. Science, 2011,332(6030):702-704. doi: 10.1126/science.1203056
Awazu K, Fujimaki M, Rockstuhl C. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide[J]. J Am Chem Soc, 2008,130(5):1676-1680. doi: 10.1021/ja076503n
Zhang Q, Lima D Q, Lee I. A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration[J]. Angew Chem Int Ed, 2011,50(31):7088-7092. doi: 10.1002/anie.201101969
Tada H, Mitsui T, Kiyonaga T. All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System[J]. Nat Mater, 2006,5:782-786. doi: 10.1038/nmat1734
Mubeen S, Lee J, Singh N. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons[J]. Nat Nanotechnol, 2013,8:247-251. doi: 10.1038/nnano.2013.18
Christopher P, Xin H L, Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures[J]. Nat Chem, 2011,3:467-472. doi: 10.1038/nchem.1032
Li G, Cherqui C, Bigelow N W. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS[J]. Nano Lett, 2015,15(5):3465-3471. doi: 10.1021/acs.nanolett.5b00802
Long R, Mao K, Gong M. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction Versus Plasmonic Effects[J]. Angew Chem Int Ed, 2014,126(12):3269-3273. doi: 10.1002/ange.201309660
Long R, Rao Z, Mao K. Efficient Coupling of Solar Energy to Catalytic Hydrogenation by Using Well-Designed Palladium Nanostructures[J]. Angew Chem Int Ed, 2015,54(8):2425-2430. doi: 10.1002/anie.201407785
Jiang R, Li B, Fang C. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater, 2014,26(31):5274-5309. doi: 10.1002/adma.201400203
Law M, Greene L E, Joh J C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photonics, 2014,8:95-103. doi: 10.1038/nphoton.2013.238
Murray W A, Barnes W L. Plasmonic Materials[J]. Adv Mater, 2007,19(22):3771-3782. doi: 10.1002/adma.200700678
Anker J N, Hall W P, Lyandres O. Biosensing with Plasmonic Nanosensors[J]. Nat Mater, 2008,7:442-453. doi: 10.1038/nmat2162
Pu Y C, Wang G, Chang K D. Au Nanostructure Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-Visible Region for Photoelectrochemical Water Splitting[J]. Nano Lett, 2013,13(8):3817-3823. doi: 10.1021/nl4018385
Liu L Q, Ouyang S X, Ye J. Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance[J]. Angew Chem Int Ed, 2013,125(26):6821-6825. doi: 10.1002/ange.201300239
Liu R, Sen A. Controlled Synthesis of Heterogeneous Metal-Titania Nanostructures and Their Applications[J]. J Am Chem Soc, 2012,134(42):17505-17512. doi: 10.1021/ja211932b
Fang C, Jia H, Chang S. (Gold Core)/(Titania Shell) Nanostructures for Plasmon-Enhanced Photon Harvesting and Generation of Reactive Oxygen Species[J]. Energy Environ Sci, 2014,7:3431-3438. doi: 10.1039/C4EE01787K
Ma X Y, Chen Z G, Hartono S B. Fabrication of Uniform Anatase TiO2 Particles Exposed by {001} Facets[J]. Chem Commun, 2010,46:6608-6610. doi: 10.1039/c0cc01473g
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
A, B.GNR@a-TiO2; C, D.GNR@c-TiO2
A.Au4f; B.Ti4+2p
A.GNR@a-TiO2; B.GNR@c-TiO2; The scale bar indicates 20 nm