Citation: LI Yingjie, LIN Xiaotong, GAO Lidi, QIN Shili, TANG Yimin, JIN Zhixiang, ZHANG Shuai. Separation and Analysis of Mixed Amino Acid Enantiomers by Capillary Electrochromatography-Electrospray-Time of Flight/Mass Spectrometry[J]. Chinese Journal of Applied Chemistry, ;2019, 36(7): 823-831. doi: 10.11944/j.issn.1000-0518.2019.07.190021 shu

Separation and Analysis of Mixed Amino Acid Enantiomers by Capillary Electrochromatography-Electrospray-Time of Flight/Mass Spectrometry

  • Corresponding author: GAO Lidi, gaolidi@163.com
  • Received Date: 22 January 2019
    Revised Date: 27 March 2019
    Accepted Date: 26 April 2019

    Fund Project: Supported by the Heilongjiang Provincial Department of Education Overseas Scholars Research Funding Project(No.1254HQ012), Heilongjiang Provincial Department of Education Basic Business Special Science and Engineering Project(No.135209215)Heilongjiang Provincial Department of Education Basic Business Special Science and Engineering Project 135209215the Heilongjiang Provincial Department of Education Overseas Scholars Research Funding Project 1254HQ012

Figures(10)

  • A simple and efficient capillary electrochromatography-electrospray- time of flight/mass spectrometry(CEC-ESI-TOF/MS) method for the separation and analysis of mixed amino acid enantiomers was established. D, L-arginine, D, L-valine, and D, L-glutamate acid were taken as the research objects. By optimizing the CEC separation conditions and MS detection conditions, the six components of the three mixed amino acid enantiomers were separated within 15 min, and the resolutions were 3.03, 1.59 and 1.37, respectively. It provides a reference method for the separation and analysis of mixed enantiomers.
  • 加载中
    1. [1]

      SUN Yaming, BI Qing, WANG Litao. Research Progress of Capillary Electrophoresis in Chiral Amino Acid Resolution[J]. Anal Test Technol Instrum, 2015,21(3):129-139.  

    2. [2]

      ZHANG Chunyu, LI Yingjie, HAO Xiuju. Chiral Separation of Enantiomers of Four Amino Acids and Two Chial Drugs Through Capillary Electrophoresis[J]. Chinese J Appl Chem, 2011,28(11):1340-1342.  

    3. [3]

      Giuffrida A, Maccarrone G, Cucinotta V. Recent Advances in Chiral Separation of Amino Acids Using Capillary Electromigration Techniques[J]. J Chromatogr A, 2014,1363:41-50.  

    4. [4]

      Schurig V. Gas Chromatographic Enantioseparation of Derivatized α-Amino Acids on Chiral Stationary Phases-Past and Present[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2011,879(29):0-3140.

    5. [5]

      Müller C, Fonseca J R. Enantioseparation and Selective Detection of D-Amino Acids by Ultra-High-Performance Liquid Chromatography/Mass Spectrometry in Analysis of Complex Biological Samples[J]. J Chromatogr A, 2014,1324:109-114.

    6. [6]

      Visser W F, Verhoeven-Duif N M, Ophoff R. A Sensitive and Simple Ultra-High-Performance-Liquid Chromatography-Tandem Mass Spectrometry Based Method for the Quantification of D-Amino Acids in Body Fluids[J]. J Chromatogr A, 2011,1218(40):7130-7136.  

    7. [7]

      Gogami Y, Okada K, Oikawa T. High-Performance Liquid Chromatography Analysis of Naturally Occurring D-Amino Acids in Sake[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2011,879(29):0-3267.  

    8. [8]

      LI Yingjie, ZHAO Nan, GAO Lidi. Preparation of β-Cyclodextrin Derivative Chiral Stationary Phase and Their Application in Capillary Electrochromatography-Mass Spectrometry[J]. J Anal Sci, 2018,34(3):377-381.  

    9. [9]

      LIU Shuren, LI Yingjie, GAO Lidi. Enatio-Separation of Two Kinds of β2-Adrenergic Receptor by CEC-ESI-TOF/MS[J]. Chem Res Appl, 2017,29(7):945-950.  

    10. [10]

      LI Yingjie, XU Hongmei, GAO Lidi. Separation and Analysis of Chiral Drugs Mixture by Capillary Electrochromatography-Electrospray-Time-of-Flight/Mass spectrometry[J]. J Instrum Anal, 2015,34(06):691-695.  

    11. [11]

      Wang S Y, Wang Y Y, Zhou J. Mono-6'-(4-Methoxybutylamino)-6'-β-Cyclodextrin as a Chiral Selector for Enantiomeric Separation[J]. J Sep Sci, 2014,37(15):2056-2061.

    12. [12]

      LI Yingjie, LIANG Hui, LV Renjiang. One-Step Preparation and Properties of Allyl-β-Cyclodextrin Chiral Monolithic Capillary Electrochromatography Column[J]. Sci China Ser B, 2010,40(11):1682-1687.  

    13. [13]

      LI Yingjie, TANG Yimin, GAO Lidi. Preparation and Application of a New Monolithic Capillary Column for Enantioseparation by CEC-MS[J]. Chem Res Appl, 2019.  

    14. [14]

      Al-Hussin A, Boysen R I, Saito K. Preparation and Electrochromatographic Characterization of New Chiral β-Cyclodextrin Poly(Acrylamidopropyl) Porous Layer Open Tubular Capillary Columns[J]. J Chromatogr A, 2014,1358:199-207.  

    15. [15]

      Dittmann M M, Rozing G P. Capillary Electrochromatography:Investigation of the Influence of Mobile Phase and Stationary Phase Properties on Electroosmotic Velocity, Retention, and Selectivity[J]. J Microcolumn Sep, 2015,9(5):399-408.

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    3. [3]

      Rong Lai Jie Li Xianfang Xu Shui Hu Tao Chen Houjin Li Guping Hu Hongyan Chen Fang Zhu . Taking the Overall Relocation as an Opportunity to Accelerate the Development of Chemical Experimental Teaching Centers: A Case Study of the National Demonstration Center for Experimental Chemistry Education at Sun Yat-Sen University. University Chemistry, 2024, 39(4): 33-39. doi: 10.3866/PKU.DXHX202310115

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    12. [12]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    15. [15]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    18. [18]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

Metrics
  • PDF Downloads(3)
  • Abstract views(386)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return