Citation: SHENG Lei, LI Tingyu, GUO Lifang, LI Gang, ZHANG Wendong. Application of Functionalized Multi-walled Carbon Nanotubes Filled Gel Electrolyte in Dye-Sensitized Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2019, 36(7): 815-822. doi: 10.11944/j.issn.1000-0518.2019.07.180410 shu

Application of Functionalized Multi-walled Carbon Nanotubes Filled Gel Electrolyte in Dye-Sensitized Solar Cells

  • Corresponding author: LI Gang, ligang02@tyut.edu.cn
  • Received Date: 25 December 2018
    Revised Date: 13 March 2019
    Accepted Date: 3 April 2019

    Fund Project: the National Natural Science Foundation of China 61674113Supported by the National Natural Science Foundation of China(No.61674113, No.51622507, No.61471255), the Natural Science Foundation of Shanxi Province, China(No.2016011040), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China(No.2016138)the Natural Science Foundation of Shanxi Province, China 2016011040the National Natural Science Foundation of China 51622507the National Natural Science Foundation of China 61471255the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China 2016138

Figures(5)

  • Gel electrolyte based on pure polyvinylidene fluoride-six fluoropropene copolymer(PVDF-HFP) often suffers from low ionic conductivity, which hinders its application in dye-sensitized solar cells(DSSCs). However, the ionic conductivity of gel electrolyte and the conversion efficiency of the DSSCs can be enhanced by nanofillers. In this paper, we employed functionalized multi-walled carbon nanotube(f-MWCNT) as the nanofiller in the gel electrolyte based on PVDF-HFP. We studied its effect on ionic conductivity and ionic diffusion of electrolytes via changing the mass fraction of f-MWCNT, and investigated its improvement on the conversion efficiency and long-term stability of DSSCs. It was found that the PVDF-HFP gel electrolyte with 0.5% f-MWCNT significantly increased the ionic conductivity and ionic diffusion coefficient of the electrolyte. Moreover, the optimal conversion efficiency of the DSSCs with gel electrolyte reaches to 5.28%, which is 31.7% higher than that of the DSSCs with unfilled gel electrolyte(4.01%). After 42 days, the DSSCs still maintained 86.5% of the original conversion efficiency. The experiment confirms the great potential of f-MWCNT as the nanofiller, providing a reference for the study to improve the performance of the gel electrolyte DSSCs by nanofillers.
  • 加载中
    1. [1]

      O'Regan B, Grätzel M. A Low-cost, High-efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nat Mater, 1991,353(6346):737-740.  

    2. [2]

      Li G, Sheng L, Li T. Engineering Flexible Dye-Sensitized Solar Cells for Portable Electronics[J]. Sol Energy, 2019,177:80-98. doi: 10.1016/j.solener.2018.11.017

    3. [3]

      YANG Mei, SHI Zhenling, XU Nan. Research Progress of Hollow Micro/Nano Structured Photoanode Materials for Dye-Sensitized Solar Cells[J]. Chinese J Appl Chem, 2018,35(8):902-915.  

    4. [4]

      LIANG Guijie, ZHONG Zhicheng, XU Jie. Quasi-Solid State Dye-Sensitized Solar Cells Based on the Novel Crosslinked Polymer Electrolyte[J]. Acta Phys Chim Sin, 2012,28(12):28-52.  

    5. [5]

      Su'ait M S, Rahman M Y A, Ahmad A. Review on Polymer Electrolyte in Dye-Sensitized Solar Cells(DSSCs)[J]. Sol Energy, 2015,115:452-470. doi: 10.1016/j.solener.2015.02.043

    6. [6]

      Chen H W, Chiang Y D, Kung C W. Highly Efficient Plastic-Based Quasi-Solid-State Dye-Sensitized Solar Cells with Light-Harvesting Mesoporous Silica Nanoparticles Gel-Electrolyte[J]. J Power Sources, 2014,245(1):411-417.  

    7. [7]

      Bella F, Pugliese D, Zolin L. Paper-Based Quasi-solid Dye-Sensitized Solar Cells[J]. Electrochim Acta, 2017,237:87-93. doi: 10.1016/j.electacta.2017.03.211

    8. [8]

      Liu X Q, Liang Y, Yue G T. A Dual Function of High Efficiency Quasi-solid-state Flexible Dye-Sensitized Solar Cell Based on Conductive Polymer Integrated into Poly(Acrylic Acid-co-Carbon Nanotubes) Gel Electrolyte[J]. Sol Energy, 2017,148:63-69. doi: 10.1016/j.solener.2017.03.070

    9. [9]

      Lee K M, Suryanarayanan V, Ho K C. A Photo-Physical and Electrochemical Impedance Spectroscopy Study on the Quasi-Solid State Dye-Sensitized Solar Cells Based on Poly(Vinylidene Fluoride-co-Hexafluoropropylene)[J]. J Power Sources, 2008,185(2):1605-1612. doi: 10.1016/j.jpowsour.2008.07.094

    10. [10]

      Chou H T, Hsu H C, Lien C H. The Effect of Various Concentrations of PVDF-HFP Polymer Gel Electrolyte for Dye-Sensitized Solar Cell[J]. Microelectron Reliability, 2015,55(11):2174-2177. doi: 10.1016/j.microrel.2015.09.015

    11. [11]

      Senthil R A, Theerthagiri J, Madhavan J. Influence of Organic Additive to PVDF-HFP Mixed Iodide Electrolytes on the Photovoltaic Performance of Dye-Sensitized Solar Cells[J]. J Phys Chem Solids, 2017,101:18-24. doi: 10.1016/j.jpcs.2016.10.007

    12. [12]

      Park J H, Kim B W, Moon J H. Dual Functions of Clay Nanoparticles with High Aspect Ratio in Dye-Sensitized Solar Cells[J]. Electrochem Solid State Lett, 2008,11(10):B171-B173. doi: 10.1149/1.2957601

    13. [13]

      Shaheer Akhtar M, Li Z Y, Park D M. A New Carbon Nanotubes(CNTs)-Poly Acrylonitrile(PAN) Composite Electrolyte for Solid State Dye Sensitized Solar Cells[J]. Electrochim Acta, 2011,56(27):9973-9979. doi: 10.1016/j.electacta.2011.08.082

    14. [14]

      Sacco A, Lamberti A, Gerosa M. Toward Quasi-Solid State Dye-Sensitized Solar Cells:Effect of γ-Al2O3 Nanoparticle Dispersion into Liquid Electrolyte[J]. Sol Energy, 2015,111:125-134. doi: 10.1016/j.solener.2014.10.034

    15. [15]

      Senevirathne A M C, Seneviratne V A, Ileperuma O A. Use of Fumed Silica Nanoparticles to Attain Polymer Free Novel Quasi-solid State Electrolyte for High-Efficiency Dye-Sensitized Solar Cells[J]. Sol Energy, 2018,159:531-537. doi: 10.1016/j.solener.2017.10.069

    16. [16]

      Prabakaran K, Palai A K, Mohanty S. Aligned Carbon Nanotube/Polymer Hybrid Electrolytes for High Performance Dye Sensitized Solar Cell Applications[J]. RSC Adv, 2015,5(82):66563-66574. doi: 10.1039/C5RA10843H

    17. [17]

      Venkatesan S, Lee Y L. Nanofillers in the Electrolytes of Dye-Sensitized Solar Cells-A Short Review[J]. Coordin Chem Rev, 2017,353:58-112. doi: 10.1016/j.ccr.2017.09.026

    18. [18]

      Khannam M, Nath B C, Mohan K J. Development of Quasi-Solid-State Dye-Sensitized Solar Cells Based on a Poly(vinyl alcohol)/Poly (ethylene glycol)/Functionalized Multi-Walled Carbon Nanotubes Gel Electrolyte[J]. Chemistryselect, 2017,2(2):673-679. doi: 10.1002/slct.201601766

    19. [19]

      Arul Xavier Stango S, Vijayalakshmi U. Synthesis and Characterization of Hydroxyapatite/Carboxylic Acid Functionalized MWCNTS Composites and Its Triple Layer Coatings for Biomedical Applications[J]. Ceram Int, 2019,45:69-81. doi: 10.1016/j.ceramint.2018.09.135

    20. [20]

      Lee J K, Jeong B H, Jang S I. Preparations of TiO2 Pastes and Its Application to Light-Scattering Layer for Dye-Sensitized Solar Cells[J]. J Ind Eng Chem, 2009,15(5):724-729. doi: 10.1016/j.jiec.2009.09.053

    21. [21]

      Muthuraaman B, Will G, Wang H. Increased Charge Transfer of Poly(Ethylene Oxide) Based Electrolyte by Addition of Small Molecule and Its Application in Dye-Sensitized Solar Cells[J]. Electrochim Acta, 2013,87:526-531. doi: 10.1016/j.electacta.2012.09.030

    22. [22]

      Ramesh S, Ramesh K, Arof A K. Fumed Silica-Doped Poly(Vinyl Chloride)-Poly(Ethylene Oxide)(PVC/PEO)-Based Polymer Electrolyte for Lithium Ion Battery[J]. Int J Electrochem Soc, 2013,8(6):8348-8355.

    23. [23]

      Nath B C, Gogoi B, Boruah M. High Performance Polyvinyl Alcohol/Multi Walled Carbon Nanotube/Polyaniline Hydrogel(PVA/MWCNT/PAni) Based Dye Sensitized Solar Cells[J]. Electrochim Acta, 2014,146:106-111. doi: 10.1016/j.electacta.2014.08.134

    24. [24]

      Prabakaran K, Jandas P J, Mohanty S. Synthesis, Characterization of Reduced Graphene Oxide Nanosheets and Its Reinforcement Effect on Polymer Electrolyte for Dye Sensitized Solar Cell Applications[J]. Sol Energy, 2018,170:442-453. doi: 10.1016/j.solener.2018.05.008

    25. [25]

      Benedetti J E, Correa A A, Carmello M. Cross-Linked Gel Polymer Electrolyte Containing Multi-wall Carbon Nanotubes for Application in Dye-Sensitized Solar Cells[J]. J Power Sources, 2012,208:263-270. doi: 10.1016/j.jpowsour.2012.01.147

    26. [26]

      Kang T S, Chun K H, Hong J S. Enhanced Stability of Photocurrent-Voltage Curves in Ru(Ⅱ)-Dye-Sensitized Nanocrystalline TiO2 Electrodes with Carboxylic Acids[J]. J Electrochem Soc, 2000,147(8):3049-3053. doi: 10.1149/1.1393646

    27. [27]

      Vittoni C, Sacchetto V, Costenaro D. Gelation of Solvent-Free Electrolyte Using Siliceous Materials with Different Size and Porosity for Applications in Dye Sensitized Solar Cells[J]. Sol Energy, 2016,124:101-113. doi: 10.1016/j.solener.2015.11.020

    28. [28]

      Katoh R, Furube A. Electron Injection Efficiency in Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C, 2014,20:1-16. doi: 10.1016/j.jphotochemrev.2014.02.001

  • 加载中
    1. [1]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(1)
  • Abstract views(401)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return