Citation: TANG Cheng, ZOU Zhijuan, SONG Kunpeng. Preparation of Ni-P Co-doped Hyper-Crosslinked Polymer and Used for Reduction of 4-Nitrophenol[J]. Chinese Journal of Applied Chemistry, ;2019, 36(7): 782-789. doi: 10.11944/j.issn.1000-0518.2019.07.180346 shu

Preparation of Ni-P Co-doped Hyper-Crosslinked Polymer and Used for Reduction of 4-Nitrophenol

  • Corresponding author: SONG Kunpeng, song19880405@126.com
  • Received Date: 31 October 2018
    Revised Date: 4 April 2019
    Accepted Date: 16 April 2019

    Fund Project: Supported by the Science and Technology Planning Project of Guangdong Province(No.2017B030314092), the Fundamental Research Funds of CWNU(No.17C038), the Meritocracy Research Funds of CWNU(No.17Y031)the Meritocracy Research Funds of CWNU 17Y031the Science and Technology Planning Project of Guangdong Province 2017B030314092the Fundamental Research Funds of CWNU 17C038

Figures(8)

  • Ni-P co-doped hyper-cross-linked polymer(HCP-(BTP-Ni)) was constructed in situ via cross-linking with bis(triphenylphosphine)nickel chloride(BTP-Ni). The specific surface area of HCP-(BTP-Ni) was controlled in the synthesis. The characterization results of nitrogen absorption and desorption(BET), scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), and others showed that the specific surface areas of HCP-(BTP-Ni) could reach 733.8 m2/g, and the conversion rate of 4-nitrophenol at room temperature could reach 99% within 8 min. The turnover frequency(TOF) could reach more than 820 h-1. At the same time, Ni-P co-doped skeleton structure greatly promoted the stability of the catalyst. The catalyst HCP-(BTP-Ni) could be reused for 8 times with a high yield.>
  • 加载中
    1. [1]

      Xia J, He G, Zhang L. Hydrogenation of Nitrophenols Catalyzed by Carbon Black-Supported Nickel Nanoparticles under Mild Conditions[J]. Appl Catal B, 2016,180:408-415. doi: 10.1016/j.apcatb.2015.06.043

    2. [2]

      Mourdikoudis S, Altantzis T, Liz-Marzan L M. Hydrophilic Pt Nanoflowers:Synthesis, Crystallographic Analysis and Catalytic Performance[J]. CrystEngComm, 2016,18(19):3422-3427. doi: 10.1039/C6CE00039H

    3. [3]

      Dong Z, Le X, Dong C. Ni@Pd Core-Shell Nanoparticles Modified Fibrous Silica Nanospheres as Highly Efficient and Recoverable Catalyst for Reduction of 4-Nitrophenol and Hydrodechlorination of 4-Chlorophenol[J]. Appl Catal, B, 2015,162:372-380. doi: 10.1016/j.apcatb.2014.07.009

    4. [4]

      YAN Xiaohong, GE Xia, ZHANG Lin. Preparation of Phosphoric Acid-functionalized Pd/C Catalyst by Coordination Reduction and Its Application[J]. Chem J Chinese Univ, 2017,38(9):1619-1626.  

    5. [5]

      Li X, Zeng C, Jiang J. Magnetic Cobalt Nanoparticles Embedded in Hierarchically Porous Nitrogen-Doped Carbon Frameworks for Highly Efficient and Well-Recyclable Catalysis[J]. J Mater Chem A, 2016,4(19):7476-7482. doi: 10.1039/C6TA01054G

    6. [6]

      Yang Y, Li X, Yang F. New Route Toward Integrating Large Nickel Nanocrystals onto Mesoporous Carbons[J]. Appl Catal B, 2015,165:94-102. doi: 10.1016/j.apcatb.2014.09.056

    7. [7]

      Zhang Y, Xia X, Cao X. Ultrafine Metal Nanoparticles/N-Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binder-Free Water Splitting Catalysts[J]. Adv Eng Mater, 2017,7(15)1700220. doi: 10.1002/aenm.201700220

    8. [8]

      Wang C, Salmon L, Ciganda R. An Efficient Parts-Per-Million Alpha-Fe2O3 Nanocluster/Graphene Oxide Catalyst for Suzuki-Miyaura Coupling Reactions and 4-Nitrophenol Reduction in Aqueous Solution[J]. Chem Commun(Camb), 2017,53(3):644-646.  

    9. [9]

      Shen W, Qu Y, Pei X. Catalytic Reduction of 4-Nitrophenol Using Gold Nanoparticles Biosynthesized by Cell-Free Extracts of Aspergillus Sp. WL-Au[J]. J Hazard Mater, 2017,321:299-306. doi: 10.1016/j.jhazmat.2016.07.051

    10. [10]

      Al-Kahtani A A, Almuqati T, Alhokbany N. A Clean Approach for the Reduction of Hazardous 4-Nitrophenol Using Gold Nanoparticles Decorated Multiwalled Carbon Nanotubes[J]. J Clean Prod, 2018,191:429-435. doi: 10.1016/j.jclepro.2018.04.197

    11. [11]

      Liu L, Gao F, Concepcion P. A New Strategy to Transform Mono and Bimetallic Non-noble Metal Nanoparticles into Highly Active and Chemoselective Hydrogenation Catalysts[J]. J Catal, 2017,350:218-225. doi: 10.1016/j.jcat.2017.03.014

    12. [12]

      Cheng S, Shang N, Feng C. Efficient Multicomponent Synthesis of Propargylamines Catalyzed by Copper Nanoparticles Supported on Metal-Organic Framework Derived Nanoporous Carbon[J]. Catal Commun, 2017,89:91-95. doi: 10.1016/j.catcom.2016.10.030

    13. [13]

      Liu J, He K, Wu W. In Situ Synthesis of Highly Dispersed and Ultrafine Metal Nanoparticles from Chalcogels[J]. J Am Chem Soc, 2017,139(8):2900-2903. doi: 10.1021/jacs.6b13279

    14. [14]

      ZHU Min, LI Manbo, YAO Chuanhao. PPh3:Converts Thiolated Gold Nanoparticles to[Au25(PPh3)10(SR)5Cl2]2+[J]. Acta Phys Chim Sin, 2018,34(7):792-978.  

    15. [15]

      Kołodyńska D, Krukowska J, Thomas P. Comparison of Sorption and Desorption Studies of Heavy Metal Ions from Biochar and Commercial Active Carbon[J]. Chem Eng J, 2017,307:353-363. doi: 10.1016/j.cej.2016.08.088

    16. [16]

      Gong K, Hu Q, Yao L. Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(Ⅵ) Removal from Wastewater[J]. ACS Sustain Chem Eng, 2018,6(6):7283-7291. doi: 10.1021/acssuschemeng.7b04421

    17. [17]

      Elwakeel K Z, El-Bindary A A, Kouta E Y. Functionalization of Polyacrylonitrile/Na-Y-Zeolite Composite with Amidoxime Groups for the Sorption of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) Metal Ions[J]. Chem Eng J, 2018,332:727-736. doi: 10.1016/j.cej.2017.09.091

    18. [18]

      Tahervand S, Jalali M. Sorption and Desorption of Potentially Toxic Metals(Cd, Cu, Ni and Zn) by Soil Amended with Bentonite, Calcite and Zeolite as a Function of pH[J]. J Geochem Explor, 2017,181:148-159. doi: 10.1016/j.gexplo.2017.07.005

    19. [19]

      Fontanals N, Marc R M, Borrull F. Hypercrosslinked Materials:Preparation, Characterisation and Applications[J]. Polym Chem, 2015,6(41):7231-7244. doi: 10.1039/C5PY00771B

    20. [20]

      TAN Liangxiao, TAN Bi'en. Research Progress in Hypercrosslinked Microporous Organic Polymers[J]. Acta Chim Sin, 2015,73(6):530-540.  

    21. [21]

      Tang C, Zou Z, Fu Y. Highly Dispersed DPPF Locked in Knitting Hyper-Crosslinked Polymers as Efficient and Recyclable Catalyst[J]. Chem Select, 2018,3(21):5987-5992.

    22. [22]

      Zhu X, Ding S, Abney C W. Superacid-Promoted Synthesis of Highly Porous Hypercrosslinked Polycarbazoles for Efficient CO2 Capture[J]. Chem Commun, 2017,53(54):7645-7648. doi: 10.1039/C7CC03620E

    23. [23]

      Tan L X, Tan B E. Hypercrosslinked Porous Polymer Materials:Design, Synthesis, and Applications[J]. Chem Soc Rev, 2017,46(11):3322-3356. doi: 10.1039/C6CS00851H

    24. [24]

      Zhang C, Zhu P C, Tan L. Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment[J]. Macromolecules, 2015,48(23):8509-8514. doi: 10.1021/acs.macromol.5b02222

    25. [25]

      Fu Y F, Song K P, Zou Z J. External Cross-Linked Sulfonate-Functionalized N-Heterocyclic Carbenes:An Efficient and Recyclable Catalyst for Suzuki-Miyaura Reactions in Water[J]. Trans Met Chem, 2018,43(8):665-672. doi: 10.1007/s11243-018-0255-z

    26. [26]

      Jia Z, Wang K, Tan B. Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as Efficient and Recyclable Catalysts for Organic Transformations[J]. Adv Synth Catal, 2017,359(1):78-88. doi: 10.1002/adsc.v359.1

    27. [27]

      Fu Z, Jia J, Li J. Transforming Waste Expanded Polystyrene Foam into Hyper-Crosslinked Polymers for Carbon Dioxide Capture and Separation[J]. Chem Eng J, 2017,323:557-564. doi: 10.1016/j.cej.2017.04.090

    28. [28]

      Li B Y, Guan Z H, Wang W. Highly Dispersed Pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki-Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Adv Mater, 2012,24(25):3390-3395. doi: 10.1002/adma.v24.25

    29. [29]

      Biesinger M C, Payne B P, Grosvenor A P. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides:Cr, Mn, Fe, Co and Ni[J]. Appl Surf Sci, 2011,257:2717-2730. doi: 10.1016/j.apsusc.2010.10.051

    30. [30]

      Kibsgaard J, Tsai C, Chan K. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends[J]. Energy Environ Sci, 2015,8(10):3022-3029. doi: 10.1039/C5EE02179K

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    12. [12]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(1)
  • Abstract views(604)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return