Citation: WANG Meng, ZHANG Bin, WEI Dequan, LIANG Lanju, ZONG Mingji, LIU Fengshou. Improvement of Electro-optical Properties of Liquid Crystal by Cubic Ferric Oxide with Different Roughness[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 690-697. doi: 10.11944/j.issn.1000-0518.2019.06.180349 shu

Improvement of Electro-optical Properties of Liquid Crystal by Cubic Ferric Oxide with Different Roughness

  • Corresponding author: ZHANG Bin, 1170720370@qq.com
  • Received Date: 5 November 2018
    Revised Date: 25 December 2018
    Accepted Date: 28 February 2019

    Fund Project: the Science and Technology Development Planning Project of Zaozhuang 2017GX06the National Natural Science Foundation of China 61735010the Natural Science Foundation of Shandong Province, China ZR2018LF001the National Natural Science Foundation of China 61675147the Natural Science Foundation of Shandong Province, China ZR2017MF005the National Natural Science Foundation of China 61701434Supported by the National Natural Science Foundation of China(No.61701434, No.61735010, No.61675147), the Natural Science Foundation of Shandong Province, China(No.ZR2017MF005, No.ZR2018LF001), the Science and Technology Development Planning Project of Zaozhuang(No.2017GX06)

Figures(4)

  • Nematic liquid crystals(NLC) materials are widely used in liquid crystal display. However, due to the presence of impurities, the driving voltage of the liquid crystal becomes large, which results in the increasing energy consumption. In order to decrease the threshold voltage and saturation voltage, nanoparticles are usually added to liquid crystal to improve the electro-optical performance. In this paper, rough and smooth cubic ferric oxide nanoparticles with uniform shape and size of~550 nm were prepared by a hydrothermal method. NLC E7 was doped with cubic Fe2O3 nanoparticles in different doping mass percent. Compared with the smooth Fe2O3/E7 composite and NLC E7, the rough Fe2O3/E7 composite has superior electro-optical properties. When the doping mass percent is 0.4%, the electro-optical properties reach the best. The threshold voltage and saturation voltage decrease by 9.9% and 11.6%, respectively, the contrast ratio increases by 80%, and the response time decreases to 6.0 ms. The superior electro-optical properties can be attributed to the sufficient surface area and more charge on the surface of rough cubic Fe2O3, which is beneficial to absorb the impurity ions in the NLC system and weaken the shielding effect of impurity ions, thus improving the electro-optical properties.
  • 加载中
    1. [1]

      Buchnev O, Podoliak N, Frank T. Controlling Stiction in Nano-Electro-Mechanical Systems Using Liquid Crystals[J]. ACS Nano, 2016,10(12):1519-11524.  

    2. [2]

      Van Boxtel M C W, Wubbenhorst M, Van Turnhout J. A Dielectric Study on the Relaxation and Switching Behaviour of Liquid Crystals Confined Within a Colloidal Network[J]. Liq Cryst, 2003,30(2):235-249.  

    3. [3]

      Arora P, Mikulko A, Podgornov F. Dielectric and Electro-Optic Properties of New Ferroelectric Liquid Crystalline Mixture Doped with Carbon Nanotubes[J]. Mol Cryst Liq Cryst, 2016,502:1-8.  

    4. [4]

      Porov P, Chandel V S, Manohar R. Dielectric and Electro-Optical Properties of Ceramic Nanoparticles Doped Liquid Crystals[J]. Trans Electr Electron Mater, 2016,17(2):69-78.  

    5. [5]

      Yakemseva M, Dierking I, Kapernaum N. Dispersions of Multi-wall Carbon Nanotubes in Ferroelectric Liquid Crystals[J]. Eur Phys J E, 2014,37(2)7.  

    6. [6]

      Acharya S, Kundu S, Hill J P. Nanorod-Driven Orientational Control of Liquid Crystal for Polarization-Tailored Electro-Optic Devices[J]. Adv Mater, 2009,21(9):989-993.  

    7. [7]

      Chandran A, Prakash J, Naik K. Preparation and Characterization of MgO Nanoparticles/Ferroelectric Liquid Crystal Composites for Faster Display Devices with Improved Contrast[J]. J Mater Chem C, 2014,2(10):1844-1853.  

    8. [8]

      Acharya S, Patla I, Kost J. Switchable Assembly of Ultra Narrow CdS Nanowires and Nanorods[J]. J Am Chem Soc, 2006,128(29):9294-9295. doi: 10.1021/ja062404i

    9. [9]

      Lapointe C, Hultgren A, Silevitch D M. Elastic Torque and the Levitation of Metal Wires by a Nematic Liquid Crystal[J]. Science, 2004,303(5658):652-655.  

    10. [10]

      Yaroshchuk O, Tomylko S, Kovalchuk O. Liquid Crystal Suspensions of Carbon Nanotubes Assisted by Organically Modified Laponite Nanoplatelets[J]. Carbon, 2014,68:389-398.  

    11. [11]

      Pendery J S, Merchiers O, Coursault D. Gold Nanoparticle Self-assembly Moderated by a Cholesteric Liquid Crystal[J]. Soft Matter, 2013,9(39):9366-9375.  

    12. [12]

      Liu B, Ma Y R, Zhao D Y. Effects of Morphology and Concentration of CuS Nanoparticles on Alignment and Electro-Optic Properties of Nematic Liquid Crystal[J]. Nano Res, 2017,10(2):618-625. doi: 10.1007/s12274-016-1321-5

    13. [13]

      Oh J Y, Park J, Jeong Y C. Secondary Interactions of Graphene Oxide on Liquid Crystal Formation and Stability[J]. Part Part Syst Charact, 2017,34(9)1600383.  

    14. [14]

      Wang Z Y, Lou X W. TiO2 Nanocages:Fast Synthesis, Interior Functionalization and Improved Lithium Storage Properties[J]. Adv Mater, 2012,24(30):4124-4129.  

    15. [15]

      Sharma M, Sinha A, Shenoy M R. Effect of TiO2 Nanoparticle Doping on the Performance of Electrically-Controlled Nematic Liquid Crystal Core Waveguide Switch[J]. Opt Mater, 2015,49(32):292-296.  

    16. [16]

      Yadav S P, Pande M, Manohar R. Applicability of TiO2 Nanoparticle Towards Suppression of Screening Effect in Nematic Liquid Crystal[J]. J Mol Liq, 2015,208(1):34-37.  

    17. [17]

      Lee H M, Chung H K, Park H G. Nickel Oxide Nanoparticles Doped Liquid Crystal System for Superior Electro-Optical Properties[J]. J Nanosci Nanotechnol, 2015,15(10):8139-8143.  

    18. [18]

      Sano S, Miyama T, Xu J, et al. Enhancement of the Performance of LCDs by Doping the Nanoparticles of MgO: The Reduction of Operating Voltage and Response Times Particularly Delay Times and the Increase in the Optical Throughput[C]//12th International Display Workshops/Asia Display. Japan: Takamatsu, 2005: 77-78.

    19. [19]

      LIU Fashun, CUI Xiaopeng, ZHAO Dongyu. Electro-Optical Properties of Smectic Liquid Crystal Display Doped with Cu2O Nanoparticles[J]. J South China Norm Univ, 2017,49(1):35-39.  

    20. [20]

      Phuan Y W, Chong M N, Ocon J D. A Novel Ternary Nanostructured Carbonaceous-Metal-Semiconductor eRGO/NiO/alpha-Fe2O3 Heterojunction Photoanode with Enhanced Charge Transfer Properties for Photoelectrochemical Water Splitting[J]. Sol Energy Mater Sol Cells, 2016,169:236-244.  

    21. [21]

      Li P, Xia C, Zhu Z Y. Ultrathin Epitaxial Ferromagnetic gamma-Fe2O3 Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors[J]. Adv Funct Mater, 2016,26(31):5679-5689.  

    22. [22]

      Xu L, Zhao D, Li Y. Improvement of the Electro-Optical Properties of Nematic Liquid Crystals by Doping with ZIF-8 Materials[J]. Acta Phys-Chim Sin, 2016,32(9):2377-2382.  

  • 加载中
    1. [1]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    7. [7]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(0)
  • Abstract views(374)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return