Citation: GUO Xiaoyan, CHENG Xiaoqi, ZHANG Liangliang, HUANG Yiping, XU Gewen, BAO Junjie. Preparation and Properties of Sulfonic Waterborne Polyurethane Hydrogels with Sodium N, N-Bis (2-hydroxyethyl)-2-aminoethane Sulfonate as Chain Extender[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 631-640. doi: 10.11944/j.issn.1000-0518.2019.06.180263 shu

Preparation and Properties of Sulfonic Waterborne Polyurethane Hydrogels with Sodium N, N-Bis (2-hydroxyethyl)-2-aminoethane Sulfonate as Chain Extender

  • Corresponding author: HUANG Yiping, yphuang2001@sina.com
  • Received Date: 10 August 2018
    Revised Date: 18 December 2018
    Accepted Date: 22 December 2018

    Fund Project: the Natural Science Foundation of Anhui Province 1808085QE173the Science Research Project of the Anhui Province Universities KJ2017A031Supported by the Natural Science Foundation of Anhui Province(No.1808085QE173), the Science Research Project of the Anhui Province Universities(No.KJ2017A031)

Figures(8)

  • A series of sulfonic waterborne polyurethane hydrogels(WPUHs) was prepared by in-situ polymerization using 3-isocyanatomethyl-3, 5, 5-trimethylcyclohexyl isocyanate(IPDI), polyethylene glycol(PEG) and diethylene glycol(DEG) as raw materials, and 2, 2-dimethylol propionic acid(DMPA) and N, N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid sodium salt(BES-Na) as hydrophilic chain extenders. The structure and properties of the gels are characterized by X-ray diffractometer, thermogravimetric analyzer and electro-mechanical universal testing machine. The results show that the thermal stability of the hydrogels increases gradually with the increase of BES-Na mass fraction, and the compressive strength and compressive modulus of WPUH7 hydrogel containing 3.46% mass fraction BES-Na are 2.9 times and 3.6 times higher than those of the WPUH1 hydrogel containing 0% mass fraction BES-Na, respectively. The swelling ratio increases from 20.55 to 29.25, and the increase of BES-Na mass fraction has a significant influence on the initial process of hydrogel swelling. At the same time, the swelling ratio of WPUH7 hydrogel increases from 17.64 to 33.80 in the range of 10~45℃ and from 20.74 to 70.69 in the range of pH 2~10, indicating that hydrogels have good sensitivity to temperature and pH.
  • 加载中
    1. [1]

      Lin Y L, Li G J. An Intermolecular Quadruple Hydrogen-Bonding Strategy to Fabricate Self-Healing and Highly Deformable Polyurethane Hydrogels[J]. J Mater Chem B, 2014,2:6878-6885. doi: 10.1039/C4TB00862F

    2. [2]

      LIU Feng, ZHUO Renxi. Preparation and Application of Hydrogel[J]. Chinese Polym Bull, 1995(4):201-216.  

    3. [3]

      LIU Huanyu, YE Jingyi, LIANG Peiying. Preparation of Hydrogels[J]. Chem Ind Times, 2014,28(1):11-14.  

    4. [4]

      Franklin D S, Guhanathan S. Investigation of Citric Acid-Glycerol Based pH-Sensitive Biopolymeric Hydrogels for Dye Removal Applications:A Green Approach[J]. Ecotox Environ Safe, 2015,121:80-86. doi: 10.1016/j.ecoenv.2015.05.003

    5. [5]

      ZHANG Li, SUN Zhanyang. Preparation of Temperature-Sensitive PNIPA-co-AA-Based Imprinted Hydrogels and Their Adsorption Properties to Imprinted Molecules[J]. Guangdong Chem Ind, 2018,45(368):108-110.  

    6. [6]

      WU Chenyi, LI Cong, ZHANG Xu. Ultrasound-Assisted Synthesis of pH-Sensitive Macroporous Sodium Alginate-Based Hydrogels and Sustained Release[J]. Mater Rev A:Rev Pap, 2018,32(4):1187-1191+1196.  

    7. [7]

      DIAO Sensen, RUAN Mengmeng, WANG Guiyou. Synthesis and Properties of Polyurethane Hydrogels Based on 100% Renewably-Sourced Poly(trimethylene ether) Glycol[J]. J Funct Polym, 2018,31(4):330-339.  

    8. [8]

      Hsieh F Y, Lin H H, Hsu S H. 3D Bioprinting of Neural Stem Cell-Laden Thermoresponsive Biodegradable Polyurethane Hydrogel and Potential in Central Nervous System Repair[J]. Biomaterials, 2015,71:48-57. doi: 10.1016/j.biomaterials.2015.08.028

    9. [9]

      WANG Shuang, XIE Min, WANG Haibo. Preparation of Phosphorus-Containing Hexahydric Alcohol and Structure and Properties of Modified Waterborne Polyurethane[J]. Polym Mater Sci Eng, 2018,34(2):32-36.  

    10. [10]

      LONG Li. Research on the Synthesis and Characterization of UV Curing Polyurethane Hydrogel[D]. Changsha: Hunan University, 2017(in Chinese).

    11. [11]

      XIANG Liujiao, ZHOU Zhihua, ZHANG Jinzhi. Preparation and Hydrophilicity of Polyurethane Hydrogel Based on PCL/MDI/DEG[J]. Mater Sci Eng Powder Metall, 2015,20(5):788-794.  

    12. [12]

      QIANG Taotao, LI Xiaoning, TANG Hua. Synthesis, Characterization and Properties of Sulfonic/Carboxylic Type High Solid Waterborne Polyurethane[J]. Fine Chem, 2016,33(2):121-126.  

    13. [13]

      Honarkar H, Mohammad B, Mehdi B. Synthesis, Characterization and Properties of Waterborne Polyurethanes Based on Two Different Ionic Centers[J]. Fiber Polym, 2015,16(4):718-725. doi: 10.1007/s12221-015-0718-1

    14. [14]

      LIU Ruowang, ZHONG Kai, YUAN Jixin. Preparation and Properties of Waterborne Polyurethane with Sodium N, N-Bis(2-hydroxyethyl)-2-aminoethane Sulfonate as Chain Extender[J]. J Mater Sci Eng, 2012,30(6):884-888, 848.  

    15. [15]

      HAN Feilong. Preparation and Swelling Properties of Physical Crosslinked Polyurethane Hydrogels[D]. Hefei: Anhui University, 2016(in Chinese). 

    16. [16]

      ZHANG Baoping. Structure and Properties of Silk Fibroin-Polyurethane Composite Hydrogels[D]. Hefei: Anhui University, 2013(in Chinese). 

    17. [17]

      Singh T, Singhal R. Poly(acrlic acid/acrylamide/sodium humate) Superabsorbent Hydrogels for Metal Ion/Dye Adsorption Effect of Sodium Humate Concentration[J]. J Appl Polym Sci, 2012,125(2):1267-1283. doi: 10.1002/app.v125.2

    18. [18]

      Bajpai A K, Giri A. Water Sorption Behavior of Highly Swelling(Carboxy methylcellulose-g-polyacrylamide) Hydrogels and Release of Potassium Nitrate as Agrochemical[J]. Carbohydr Polym, 2003,53(3):271-279. doi: 10.1016/S0144-8617(03)00071-7

    19. [19]

      YU Bin. Thermal- and pH-Sensitive Polyurethane Hydrogel Materials: Preparation and Adsorption Property[D]. Xiangtan: Hu′nan University of Science and Technology, 2017(in Chinese).

  • 加载中
    1. [1]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    11. [11]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    19. [19]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(3)
  • Abstract views(732)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return