Citation: ZHANG Yudong, GAO Yun, ZHANG Lei, LI Qinghua. Effect of Poly(4-ethylphenol) Antioxidant on Non-isothermal Crystallization Behavior of Polypropylene[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 539-547. doi: 10.11944/j.issn.1000-0518.2019.05.180286 shu

Effect of Poly(4-ethylphenol) Antioxidant on Non-isothermal Crystallization Behavior of Polypropylene

  • Corresponding author: LI Qinghua, lqh6511@163.com
  • Received Date: 4 September 2018
    Revised Date: 6 November 2018
    Accepted Date: 13 December 2018

    Fund Project: Natural Science Fund of Henan Province 162300410018the National Natural Science Foundation of China 51703051Supported by the National Natural Science Foundation of China(No.51703051), Natural Science Fund of Henan Province(No.162300410018)

Figures(10)

  • The effect of poly(4-ethylphenol) antioxidant on the non-isothermal crystallization behavior of polypropylene(PP) was studied by differential scanning calorimetry(DSC) and X-ray powder diffractometry(XRD), respectively. The non-isothermal crystallization kinetics was studied by the Jeziorny method and the Mo method, and the activation energy was calculated by the Friedman method and the Kissinger method at the same time. The Hoffman-Lauritzen parameters of nucleation rate constant(Kg) and molecular diffusion activation energy(U*) are obtained from the relation of crystallization activity energy and average crystallization temperatures for PP and PP with (4-ethylphenol) antioxidant(PP-A) samples, and the fold surface free energy(σe) and the work of chain folding per molecule(q) are then calculated. The results show that the crystallization peak of PP-A moves to a lower temperature with the addition of antioxidant, and the crystallization half-peak width becomes broader, the semi-crystallization(t1/2) and the parameter F(T) reflecting the value of cooling rate chosen at unit crystallization time obtained by Mo method increase while the crystallization rate(Z) decreases. The negative crystallization activity energy becomes smaller at the same crystallization conversion rate, and the Hoffman-Lauritzen parameters of Kg, U*, σe and q increase. All the results indicate that poly(4-ethylphenol) antioxidant inhibits the crystallization of PP.
  • 加载中
    1. [1]

      Zheng K, Duan H, Zhang L. Synthesis of Poly(4-methoxyphenol) by Enzyme-Catalyzed Polymerization and Evaluation of Its Antioxidant Activity[J]. New J Chem, 2013,37:4185-4191. doi: 10.1039/c3nj01018j

    2. [2]

      Zheng K, Tang H, Chen Q M. Enzymatic Synthesis of a Polymeric Antioxidant for Efficient Stabilization of Polypropylene[J]. Polym Degrad Stab, 2015,112:27-34.  

    3. [3]

      Gao Y H, Jiang F, Zhang L. Enzymatic Synthesis of Polyguaiacol and Its Thermal Antioxidant Behavior in Polypropylene[J]. Polym Bull, 2016,73:1343-1359. doi: 10.1007/s00289-015-1551-9

    4. [4]

      JIANG Fan, CHAI Chunxiao, TIAN Qingfeng. Influences of p-Cresol Oligomer on Thermal Oxidation Stability of Polypropylene[J]. Polym Mater Sci Eng, 2017,33(12):53-58.  

    5. [5]

      Papageorgiou G Z, Achilias D S, Bikiaris D N. Crystallization Kinetics and Nucleation Activity of Filler in Polypropylene/Surface-Treated SiO2 Nanocomposites[J]. Thermochim Acta, 2005,427:117-128. doi: 10.1016/j.tca.2004.09.001

    6. [6]

      Jiang J, Li G, Tan N S. Crystallization and Melting Behavior of Isotactic Polypropylene Composites Filled by Zeolite Supported β-Nucleator[J]. Thermo Acta, 2012,546:127-133.  

    7. [7]

      Nattapon U, Methakarn J, Zheng P. Effects of Cooling Rates on Crystallization Behavior and Melting Characteristics of Isotactic Polypropylene as Neat and in the TPVs EPDM/PP and EOC/PP[J]. Polym Test, 2015,44:101-111. doi: 10.1016/j.polymertesting.2015.04.002

    8. [8]

      Durmus A, Yalcinyuva T. Effects of Additives on Non-isothermal Crystallization Kinetics and Morphology of Isotactic Polypropylene[J]. J Polym Res, 2009,16:489-498. doi: 10.1007/s10965-008-9252-9

    9. [9]

      Klemens G, Susanne B, Gernot M. Characterization of the Influence of Specimen Thickness on the Aging Behavior of a Polypropylene Based Model Compound[J]. Polym Degrad Stab, 2015,111:185-193.  

    10. [10]

      Xin M L, Ma Y J, Lin W H. Use of Dihydromyricetin as Antioxidant for Polypropylene Stabilization[J]. J Therm Anal Calorim, 2015,120:1741-1747. doi: 10.1007/s10973-015-4504-5

    11. [11]

      LIU Xianlong, LI Juan, WU Yujiao. Effect of Different Antioxidants on Properties of PP/NA-11 by Non-isothermal Crystallization Kinetic[J]. China Plast Ind, 2015,43(2):81-85. doi: 10.3969/j.issn.1005-5770.2015.02.019

    12. [12]

      CHAI Chunxiao, JIANG Fan, ZHENG Ke. Enzymatic Synthesis of 4-Ethylphenol Oligomer and Investigation of Its Antioxidant Performance[J]. Chem Res, 2017,28(4):487-492. doi: 10.3969/j.issn.1004-1656.2017.04.008

    13. [13]

      Weng W G, Chen G H, Wu D J. Crystallization Kinetics and Melting Behaviors of Nylon 6/Foliated Graphite Nanocomposites[J]. Polymer, 2003,44(26):8119-8132. doi: 10.1016/j.polymer.2003.10.028

    14. [14]

      ZHANG Yudong, GUO Liping, XU Xiangmin. Non-Isothermal Crystallization Kinetics and Dynamic Mechanical Properties of Polyoxymethylene/Reactable nano-SiO2 Composites[J]. China Plast, 2013,27(2):44-50.

    15. [15]

      MO Zhishen. A Method for the Non-isothermal Crystallization Kinetics of Polymers[J]. Acta Polym Sin, 2008,7:656-661. doi: 10.3321/j.issn:1000-3304.2008.07.005

    16. [16]

      Vyazovkin S. A Time to Search:Finding the Meaning of Variable Activation Energy[J]. Phys Chem Chem Phys, 2016,18:18643-18656. doi: 10.1039/C6CP02491B

    17. [17]

      Vyazovkin S. Isoconversional Kinetics of Polymers:The Decade Past[J]. Macromol Rapid Commun, 2017,38:1600615-1600636. doi: 10.1002/marc.v38.3

    18. [18]

      Kissinger H E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J]. J Res Natl Bur Stand, 1956,57(4):217-221. doi: 10.6028/jres.057.026

    19. [19]

      Friedman H J. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic[J]. J Polym Sci Part C, 1967,6(1):183-195.

    20. [20]

      Vyazovkin S, Sbirrazzuoli N. Isoconversional Analysis of Calorimetric Data on Nonisothermal Crystallization of a Polymer Melt[J]. J Phys Chem B, 2003,107:882-888. doi: 10.1021/jp026592k

    21. [21]

      Vyazovkin S, Sbirrazzuoli N. Isoconversional Approach to Evaluating the Hoffman Lauritzen Parameters(U* and Kg) from the Overall Rates of Nonisothermal Crystallization[J]. Macromol Rapid Commun, 2004,25(6):733-738. doi: 10.1002/(ISSN)1521-3927

    22. [22]

      Gupta S, Yuan X P, Chung T C M. Isothermal and Non-isothermal Crystallization Kinetics of Hydroxyl-Functionalized Polypropylene[J]. Polymer, 2014,55(3):924-935.  

    23. [23]

      Wu T M, Hsu S F, Chien C F. Isothermal and Nonisothermal Crystallization Kinetics of Syndiotactic Polystyrene/Clay Nanocomposites[J]. Polym Eng Sci, 2004,44(12):2288-2297. doi: 10.1002/(ISSN)1548-2634

    24. [24]

      Mahajan S J, Deopura B L, Yimin W. Structure and Properties of Drawn Tapes of High-Density Polyethylene/Ethylene Copolymer Blends[J]. J Appl Polym Sci, 1996,60(10):1517-1525. doi: 10.1002/(ISSN)1097-4628

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    10. [10]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

Metrics
  • PDF Downloads(1)
  • Abstract views(632)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return