Citation: ZHANG Yudong, GAO Yun, ZHANG Lei, LI Qinghua. Effect of Poly(4-ethylphenol) Antioxidant on Non-isothermal Crystallization Behavior of Polypropylene[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 539-547. doi: 10.11944/j.issn.1000-0518.2019.05.180286 shu

Effect of Poly(4-ethylphenol) Antioxidant on Non-isothermal Crystallization Behavior of Polypropylene

  • Corresponding author: LI Qinghua, lqh6511@163.com
  • Received Date: 4 September 2018
    Revised Date: 6 November 2018
    Accepted Date: 13 December 2018

    Fund Project: Natural Science Fund of Henan Province 162300410018the National Natural Science Foundation of China 51703051Supported by the National Natural Science Foundation of China(No.51703051), Natural Science Fund of Henan Province(No.162300410018)

Figures(10)

  • The effect of poly(4-ethylphenol) antioxidant on the non-isothermal crystallization behavior of polypropylene(PP) was studied by differential scanning calorimetry(DSC) and X-ray powder diffractometry(XRD), respectively. The non-isothermal crystallization kinetics was studied by the Jeziorny method and the Mo method, and the activation energy was calculated by the Friedman method and the Kissinger method at the same time. The Hoffman-Lauritzen parameters of nucleation rate constant(Kg) and molecular diffusion activation energy(U*) are obtained from the relation of crystallization activity energy and average crystallization temperatures for PP and PP with (4-ethylphenol) antioxidant(PP-A) samples, and the fold surface free energy(σe) and the work of chain folding per molecule(q) are then calculated. The results show that the crystallization peak of PP-A moves to a lower temperature with the addition of antioxidant, and the crystallization half-peak width becomes broader, the semi-crystallization(t1/2) and the parameter F(T) reflecting the value of cooling rate chosen at unit crystallization time obtained by Mo method increase while the crystallization rate(Z) decreases. The negative crystallization activity energy becomes smaller at the same crystallization conversion rate, and the Hoffman-Lauritzen parameters of Kg, U*, σe and q increase. All the results indicate that poly(4-ethylphenol) antioxidant inhibits the crystallization of PP.
  • 加载中
    1. [1]

      Zheng K, Duan H, Zhang L. Synthesis of Poly(4-methoxyphenol) by Enzyme-Catalyzed Polymerization and Evaluation of Its Antioxidant Activity[J]. New J Chem, 2013,37:4185-4191. doi: 10.1039/c3nj01018j

    2. [2]

      Zheng K, Tang H, Chen Q M. Enzymatic Synthesis of a Polymeric Antioxidant for Efficient Stabilization of Polypropylene[J]. Polym Degrad Stab, 2015,112:27-34.  

    3. [3]

      Gao Y H, Jiang F, Zhang L. Enzymatic Synthesis of Polyguaiacol and Its Thermal Antioxidant Behavior in Polypropylene[J]. Polym Bull, 2016,73:1343-1359. doi: 10.1007/s00289-015-1551-9

    4. [4]

      JIANG Fan, CHAI Chunxiao, TIAN Qingfeng. Influences of p-Cresol Oligomer on Thermal Oxidation Stability of Polypropylene[J]. Polym Mater Sci Eng, 2017,33(12):53-58.  

    5. [5]

      Papageorgiou G Z, Achilias D S, Bikiaris D N. Crystallization Kinetics and Nucleation Activity of Filler in Polypropylene/Surface-Treated SiO2 Nanocomposites[J]. Thermochim Acta, 2005,427:117-128. doi: 10.1016/j.tca.2004.09.001

    6. [6]

      Jiang J, Li G, Tan N S. Crystallization and Melting Behavior of Isotactic Polypropylene Composites Filled by Zeolite Supported β-Nucleator[J]. Thermo Acta, 2012,546:127-133.  

    7. [7]

      Nattapon U, Methakarn J, Zheng P. Effects of Cooling Rates on Crystallization Behavior and Melting Characteristics of Isotactic Polypropylene as Neat and in the TPVs EPDM/PP and EOC/PP[J]. Polym Test, 2015,44:101-111. doi: 10.1016/j.polymertesting.2015.04.002

    8. [8]

      Durmus A, Yalcinyuva T. Effects of Additives on Non-isothermal Crystallization Kinetics and Morphology of Isotactic Polypropylene[J]. J Polym Res, 2009,16:489-498. doi: 10.1007/s10965-008-9252-9

    9. [9]

      Klemens G, Susanne B, Gernot M. Characterization of the Influence of Specimen Thickness on the Aging Behavior of a Polypropylene Based Model Compound[J]. Polym Degrad Stab, 2015,111:185-193.  

    10. [10]

      Xin M L, Ma Y J, Lin W H. Use of Dihydromyricetin as Antioxidant for Polypropylene Stabilization[J]. J Therm Anal Calorim, 2015,120:1741-1747. doi: 10.1007/s10973-015-4504-5

    11. [11]

      LIU Xianlong, LI Juan, WU Yujiao. Effect of Different Antioxidants on Properties of PP/NA-11 by Non-isothermal Crystallization Kinetic[J]. China Plast Ind, 2015,43(2):81-85. doi: 10.3969/j.issn.1005-5770.2015.02.019

    12. [12]

      CHAI Chunxiao, JIANG Fan, ZHENG Ke. Enzymatic Synthesis of 4-Ethylphenol Oligomer and Investigation of Its Antioxidant Performance[J]. Chem Res, 2017,28(4):487-492. doi: 10.3969/j.issn.1004-1656.2017.04.008

    13. [13]

      Weng W G, Chen G H, Wu D J. Crystallization Kinetics and Melting Behaviors of Nylon 6/Foliated Graphite Nanocomposites[J]. Polymer, 2003,44(26):8119-8132. doi: 10.1016/j.polymer.2003.10.028

    14. [14]

      ZHANG Yudong, GUO Liping, XU Xiangmin. Non-Isothermal Crystallization Kinetics and Dynamic Mechanical Properties of Polyoxymethylene/Reactable nano-SiO2 Composites[J]. China Plast, 2013,27(2):44-50.

    15. [15]

      MO Zhishen. A Method for the Non-isothermal Crystallization Kinetics of Polymers[J]. Acta Polym Sin, 2008,7:656-661. doi: 10.3321/j.issn:1000-3304.2008.07.005

    16. [16]

      Vyazovkin S. A Time to Search:Finding the Meaning of Variable Activation Energy[J]. Phys Chem Chem Phys, 2016,18:18643-18656. doi: 10.1039/C6CP02491B

    17. [17]

      Vyazovkin S. Isoconversional Kinetics of Polymers:The Decade Past[J]. Macromol Rapid Commun, 2017,38:1600615-1600636. doi: 10.1002/marc.v38.3

    18. [18]

      Kissinger H E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J]. J Res Natl Bur Stand, 1956,57(4):217-221. doi: 10.6028/jres.057.026

    19. [19]

      Friedman H J. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic[J]. J Polym Sci Part C, 1967,6(1):183-195.

    20. [20]

      Vyazovkin S, Sbirrazzuoli N. Isoconversional Analysis of Calorimetric Data on Nonisothermal Crystallization of a Polymer Melt[J]. J Phys Chem B, 2003,107:882-888. doi: 10.1021/jp026592k

    21. [21]

      Vyazovkin S, Sbirrazzuoli N. Isoconversional Approach to Evaluating the Hoffman Lauritzen Parameters(U* and Kg) from the Overall Rates of Nonisothermal Crystallization[J]. Macromol Rapid Commun, 2004,25(6):733-738. doi: 10.1002/(ISSN)1521-3927

    22. [22]

      Gupta S, Yuan X P, Chung T C M. Isothermal and Non-isothermal Crystallization Kinetics of Hydroxyl-Functionalized Polypropylene[J]. Polymer, 2014,55(3):924-935.  

    23. [23]

      Wu T M, Hsu S F, Chien C F. Isothermal and Nonisothermal Crystallization Kinetics of Syndiotactic Polystyrene/Clay Nanocomposites[J]. Polym Eng Sci, 2004,44(12):2288-2297. doi: 10.1002/(ISSN)1548-2634

    24. [24]

      Mahajan S J, Deopura B L, Yimin W. Structure and Properties of Drawn Tapes of High-Density Polyethylene/Ethylene Copolymer Blends[J]. J Appl Polym Sci, 1996,60(10):1517-1525. doi: 10.1002/(ISSN)1097-4628

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    10. [10]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    11. [11]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    12. [12]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    13. [13]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Dongyan Tang Yanqiu Jiang Su'e Hao Yunchen Du Lizhu Zhang Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062

    18. [18]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    19. [19]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    20. [20]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

Metrics
  • PDF Downloads(1)
  • Abstract views(943)
  • HTML views(325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return