Citation: BAO Jinping, FAN Sufang, YANG Guoyu, WANG Zhimin, WANG Ying, LIU Xiaohua, XU Cuilian. Synthesis and Antifungal Activities of Chitosan Oligosaccharide Thiosemicarbazone Schiff Base Cu(Ⅱ) Complex[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 500-508. doi: 10.11944/j.issn.1000-0518.2019.05.180284 shu

Synthesis and Antifungal Activities of Chitosan Oligosaccharide Thiosemicarbazone Schiff Base Cu(Ⅱ) Complex

  • Corresponding author: YANG Guoyu, ygy1096@sina.com XU Cuilian, xucuilian666@126.com
  • Received Date: 3 September 2018
    Revised Date: 7 December 2018
    Accepted Date: 3 January 2019

    Fund Project: the Science and Technology Tackling Key Project of Henan Province 1521021100700the Science and Technology Tackling Key Project of Henan Province 112101110200National Undergraduate Training Program for Innovation and Entrepreneurship 201610466022Supported by the Science and Technology Tackling Key Project of Henan Province(No.1521021100700, No.112101110200), Project of Subsidized Youth Backbone Teachers in Henan Higher Education Institutions(No.2014GGJS-083), National Undergraduate Training Program for Innovation and Entrepreneurship(No.201610466022)Project of Subsidized Youth Backbone Teachers in Henan Higher Education Institutions 2014GGJS-083

Figures(8)

  • Chitosan oligosaccharide thiosemicarbazide was prepared in one-pot. Then chitosan oligosaccharide thiosemicarbazone was synthesized by the reaction of chitosan thiosemicarbazide with 2-pyridinecarboxaldehyde. Chitosan oligosaccharide thiosemicarbazone Cu(Ⅱ) complex was thus obtained by the reaction of chitosan thiosemicarbazide with Cu(Ⅱ) salt. The structure of the synthesized compounds was characterized by infrared(IR) spectroscopy, ultraviolet-visible(UV-Vis) spectroscopy, nuclear magnetic resonance(NMR), inductively coupled plasma(ICP), and thermogravimetry-differential thermal analysis(TG-DTA). The antifungal behaviors of chitosan oligosaccharide and its derivatives against three crop-threatening pathogenic fungi:Phytophthora capsici (P.capsici), Phytophthora nicotianae (P.nicotianae), Fusarium graminearum (F.graminearum) were investigated by mycelial growth rate method in vitro. The results show that the inhibitory index of chitosan thiosemicarbazone Cu(Ⅱ) complex against P.capsici, P.nicotianae, F.graminearum is 74.19%, 56.60%, 66.60%, respectively, and is higher than those observed with chitosan.
  • 加载中
    1. [1]

      XUE Chunsheng, HE Ruihong, LI Xinghai. Inhibition Effect of Cycloakylsulfonamide on Phytophthora capsici[J]. Plant Prot, 2016,42(1):214-218. doi: 10.3969/j.issn.0529-1542.2016.01.040

    2. [2]

      HE Wei, ZHANG Hui, WANG Ying. Rapid Identification of Resistance to Phytophthora capsici in Pepper[J]. Plant Prot, 2018,44(2):145-148.  

    3. [3]

      CUI Linkai, ZHAO Shanshan, GAO Pengfei. Genetic Structure Analysis of Phytophthora nicotianae Population in Henan Province by SSR Marker[J]. Acta Tabaca Sin, 2018,24(5):51-56.  

    4. [4]

      ZONG Ying, HAO Yueju, LIU Yang. Study on the Inhibitory Effect of Bacillus velezensis on Fusarium graminearum[J]. J Nucl Agric Sci, 2018,32(2):310-317.  

    5. [5]

      CHEN Zebin, XIA Zhenyuan, LEI Liping. Screening of Endophytic Beneficial Bacteria to Tobacco black shank Control and Its Bacteriostasis[J]. Acta Tabaca Sin, 2013,19(5):112-117. doi: 10.3969/j.issn.1004-5708.2013.05.020

    6. [6]

      CHENG Genwu, LIU Ying, QI Zhiqiu. Activity of Azoxystrobin on Several Plant Pathogenic Fungi[J]. Chinese J Pestic, 2005,44(4):190-191. doi: 10.3969/j.issn.1006-0413.2005.04.017

    7. [7]

      XU Liangzhong, LI Huijing, ZHANG Shusheng. Progress of 1, 2, 4-Triazole Fungicides[J]. J Qingdao Inst Chem Technol, 2000,21(3):201-205. doi: 10.3969/j.issn.1672-6987.2000.03.006

    8. [8]

      Chiena R C, Tsung Y D, Leun M J. Antimicrobial and Antitumor Activities of Chitosan from Shiitake Stipes, Compared to Commercial Chitosan from Crab Shells[J]. Carbohydr Polym, 2016,138:259-264. doi: 10.1016/j.carbpol.2015.11.061

    9. [9]

      Yuan G F, Chen X, Li D. Chitosan Films and Coatings Containing Essential Oils:The Antioxidant and Antimicrobial Activity, and Application in Food Systems[J]. Food Res Int, 2016,89:117-128. doi: 10.1016/j.foodres.2016.10.004

    10. [10]

      Verlee A, Mincke V S, Stevens C. Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives[J]. Carbohydr Polym, 2017,164:268-283. doi: 10.1016/j.carbpol.2017.02.001

    11. [11]

      Li Q, Tan W Q, Zhang C L. Novel Triazolyl-Functionalized Chitosan Derivatives with Different Chain Lengths of Aliphatic Alcohol Substituent: Design, Synthesis, and Antifungal Activity[J]. Carbohydr Res, 2015,418(11):44-49.

    12. [12]

      Li Q, Tan W Q, Zhang C L. Synthesis of Water Soluble Chitosan Derivatives with Halogeno-1, 2, 3-Triazole and Their Antifungal Activity[J]. Int J Biol Macromol, 2016,91:623-629. doi: 10.1016/j.ijbiomac.2016.06.006

    13. [13]

      Jia R X, Duan Y F, Fang Q. Pyridine-Grafted Chitosan Derivative as an Antifungal Agent[J]. Food Chem, 2016,196:381-387. doi: 10.1016/j.foodchem.2015.09.053

    14. [14]

      Salama H E, Saad G R, Sabaa M W. Synthesis, Characterization and Biological Activity of Schiff Bases Based on Chitosan and Arylpyrazole Moiety[J]. Int J Biol Macromol, 2015,79:996-1003. doi: 10.1016/j.ijbiomac.2015.06.009

    15. [15]

      Qin Y K, Xing R E, Liu S. Synthesis and Antifungal Properties of (4-Tolyloxy)-Pyrimidyl-α-Aminophosphonates Chitosan Derivatives[J]. Int J Biol Macromol, 2014,63:83-91. doi: 10.1016/j.ijbiomac.2013.10.023

    16. [16]

      LIU Haibin, LV Ping, PAN Ningning. Synthesis and In vitro Anticancer Activity of Novel Quinazoline Derivatives Containing Thiosemicarbazone Structure[J]. Chem J Chinese Univ, 2014,35(5):981-988.  

    17. [17]

      WANG Zhen, DONG Wei, XU Yan. Synthesis of Substituted Benzylidene Hydrazinecarbothioamide(Hydrazinecarboxamide, Nitrohydrazinecarboximidamide) and Their Inhibitory Activity on Tyrosinase of Diamondback Moth Plutella Xylostella(L.)[J]. Chinese J Pestic Sci, 2010,12(3):264-268. doi: 10.3969/j.issn.1008-7303.2010.03.04

    18. [18]

      MIN Rui, FAN Xiaorui, ZHOU Pan. Synthesis, Crystal Structure, DNA Interaction and Antitumor Activity of Nickel Complex with Quinoline-2-Carboxaldehyde N4-Methyl-Thiosemicarbazone[J]. Chinese J Inorg Chem, 2014,30(8):1771-1777.  

    19. [19]

      Kumar S, Hansda A, Chandra A. Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) Complexes of Acenaphthoquinone 3-(4-Benzylpiperidyl)thiosemicarbazone:Synthesis, Structural, Electrochemical and Antibacterial Studies[J]. Polyhedron, 2017,134:11-21. doi: 10.1016/j.poly.2017.05.055

    20. [20]

      Khan S A, Asiri A M, Al-amry K. Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(Ⅱ), Ni(Ⅱ), and Co(Ⅱ) Complexes[J]. Sci World J, 2014,592375:1-9.

    21. [21]

      Qin Y K, Xing R G, Liu S. Novel Thiosemicarbazone Chitosan Derivatives:Preparation, Characterization, and Antifungal Activity[J]. Carbohydr Polym, 2012,87(4):2664-2670. doi: 10.1016/j.carbpol.2011.11.048

    22. [22]

      Yang G Y, Jin Q, Xu C L. Synthesis, Characterization and Antifungal Activity of Coumarin- Functionalized Chitosan Derivatives[J]. Int J Biol Macromol, 2018,106:179-184. doi: 10.1016/j.ijbiomac.2017.08.009

    23. [23]

      Qin Y K, Liu S, Xing R E. Synthesis and Antifungal Evaluation of (1, 2, 3-triazol-4-yl)methyl Nicotinate Chitosan[J]. Int J Biol Macromol, 2013,61:58-62. doi: 10.1016/j.ijbiomac.2013.05.023

    24. [24]

      Kittur F S, Prashanth K V H, Sankar K U. Characterization of Chitin, Chitosan and Their Carboxymethyl Derivatives by Differential Scanning Calorimetry[J]. Carbohydr Polym, 2002,49(2):185-193. doi: 10.1016/S0144-8617(01)00320-4

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    14. [14]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    15. [15]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(2)
  • Abstract views(502)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return