Citation: HUANG Xiaomei, DENG Xiang. Preparation of New Photoluminescent Carbon Dots and Its Application in Hg2+ Detection[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 603-610. doi: 10.11944/j.issn.1000-0518.2019.05.180259 shu

Preparation of New Photoluminescent Carbon Dots and Its Application in Hg2+ Detection

  • Corresponding author: HUANG Xiaomei, dxw8066031@163.com
  • Received Date: 6 August 2018
    Revised Date: 15 October 2018
    Accepted Date: 12 December 2018

    Fund Project: the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education LYJ1802the Water Treatment Research Project of Sichuan University of Arts and Science 2018SCL002YSupported by the Scientific Research Fund of the Sichuan Provincial Education Department(No.18ZA0414), the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education(No.LYJ1802), the Water Treatment Research Project of Sichuan University of Arts and Science(No.2018SCL002Y)the Scientific Research Fund of the Sichuan Provincial Education Department 18ZA0414

Figures(5)

  • The new photoluminescent carbon dots were prepared via high temperature pyrolysis of Chinese herbal medicine Chuan Bergamot. The average particle size of photoluminescent carbon dots is 6 nm, the maximum excitation wavelength is 285 nm, and the maximum photoluminescent emission wavelength is 340 nm. Based on the good photoluminescent properties of carbon dots and the quenching effect of Hg2+ on photoluminescence of carbon dots, a new method for the detection of Hg2+ was established. The experimental results show that the method has good selectivity and anti-interference ability with a response time of 2 min in 0.2 mol/L phosphate buffer solution(pH=7.0). The linear range of Hg2+ concentration is from 0.2 μmol/L to 40 μmol/L, the correlation coefficient is 0.9996, and the detection limit is 0.052 μmol/L. When 2.0 μmol/L and 40.0 μmol/L Hg2+ are added to the actual water sample, the relative standard deviation(RSD) and the recovery ranges are from 0.3% to 2.4% and from 99.5% to 101.1%, respectively. Therefore, it can be applied in the analysis and detection of Hg2+ in real samples.
  • 加载中
    1. [1]

      Cui L, Wu J, Ju H. Nitrogen-Doped Porous Carbon Derived from Metal-Organic Gel for Electrochemical Analysis of Heavy-Metal Ion[J]. ACS Appl Mater Interfaces, 2014,6(18):16210-16216. doi: 10.1021/am504367t

    2. [2]

      Tan J Z, Nursam N M, Xia F. High-Performance Coral Reef-like Carbon Nitrides:Synthesis and Application in Photocatalysis and Heavy Metal Ion Adsorption[J]. ACS Appl Mater Interfaces, 2017,9(5):4540-4547. doi: 10.1021/acsami.6b11427

    3. [3]

      Chen L Y, Ou C M, Chen W Y. Synthesis of Photoluminescent Au ND-PNIPAM Hybrid Microgel for the Detection of Hg2+[J]. ACS Appl Mater Interfaces, 2013,5(10):4383-4388. doi: 10.1021/am400628p

    4. [4]

      Huang P J, Wang F, Liu J. Cleavable Molecular Beacon for Hg2+ Detection Based on Phosphorothioate RNA Modifications[J]. Anal Chem, 2015,87(13):6890-6895. doi: 10.1021/acs.analchem.5b01362

    5. [5]

      Cui X, Zhu L, Wu J. A Fluorescent Biosensor Based on Carbon Dots-Labeled Oligodeoxyribonucleotide and Graphene Oxide for Mercury(Ⅱ) Detection[J]. Biosens Bioelectron, 2015,63(6):506-512.  

    6. [6]

      Chen L, Lu L, Wang S. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-assembly of Gold Nanorods[J]. ACS Sens, 2017,2(6):781-788. doi: 10.1021/acssensors.7b00149

    7. [7]

      Hsu I H, Hsu T C, Sun Y C. Gold-Nanoparticle-Based Graphite Furnace Atomic Absorption Spectrometry Amplification and Magnetic Separation Method for Sensitive Detection of Mercuric Ions[J]. Biosens Bioelectron, 2011,26(11):4605-4609. doi: 10.1016/j.bios.2011.04.048

    8. [8]

      Da S M, Paim A P, Pimentel M F. Determination of Mercury in Rice by Cold Vapor Atomic Fluorescence Spectrometry After Microwave-Assisted Digestion[J]. Anal Chim Acta, 2010,667(1):43-48.  

    9. [9]

      Khatua S, Schmittel M. A Single Molecular Light-up Sensor for Quantification of Hg2+ and Ag+ in Aqueous Medium:High Selectivity Toward Hg2+ over Ag+ in a Mixture[J]. Org Lett, 2013,15(17):4422-4425. doi: 10.1021/ol401970n

    10. [10]

      Hussain M M, Rahman M M, Arshad M N. Hg2+ Sensor Development Based on (E)-N'-Nitrobenzylidene-Benzenesulfonohydrazide(NBBSH) Derivatives Fabricated on a Glassy Carbon Electrode with a Nafion Matrix[J]. ACS Omega, 2017,2(2):420-431. doi: 10.1021/acsomega.6b00359

    11. [11]

      Chen F Y, Jiang S J. Slurry Sampling Flow Injection Chemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry for the Determination of As, Cd, and Hg in Cereals[J]. J Agric Food Chem, 2009,57(15):6564-6569. doi: 10.1021/jf9013857

    12. [12]

      Zhao T, Goodwin E D, Guo J. An Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer[J]. ACS Nano, 2016,10(10):9267-9273. doi: 10.1021/acsnano.6b03175

    13. [13]

      Roelofs K E, Herron S M, Bent S F. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells[J]. ACS Nano, 2015,9(8):8321-8334. doi: 10.1021/acsnano.5b02853

    14. [14]

      Agarwalla H, Mahajan P S, Sahu D. A Switch-on NIR Probe for Specific Detection of Hg2+ Ion in Aqueous Medium and in Mitochondria[J]. Inorg Chem, 2016,55(22):12052-12060. doi: 10.1021/acs.inorgchem.6b02233

    15. [15]

      Zheng M, Li Y, Liu S. One-Pot to Synthesize Multifunctional Carbon Dots for Near Infrared Fluorescence Imaging and Photothermal Cancer Therapy[J]. ACS Appl Mater Interfaces, 2016,8(36):23533-23541. doi: 10.1021/acsami.6b07453

    16. [16]

      Xu X, Kai Z, Liang Z. Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-inflammation[J]. ACS Appl Mater Interfaces, 1944,8(48):32706-32716.  

    17. [17]

      Liu H, Ye T, Mao C. Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angew Chem Int Ed Engl, 2007,46(34):6473-6475. doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Bourlinos A B, Stassinopoulos A, Anglos D. Photoluminescent Carbogenic Dots[J]. Chem Mater, 2008,20(14):4539-4541. doi: 10.1021/cm800506r

    19. [19]

      Tian L, Ghosh D, Chen W. Nanosized Carbon Particles from Natural Gas Soot[J]. Chem Mater, 2009,21(13):2803-2809. doi: 10.1021/cm900709w

    20. [20]

      Ray S C, Saha A, Jana N R. Fluorescent Carbon Nanoparticles:Synthesis, Characterization, and Bioimaging Application[J]. J Phys Chem C, 2009,113(43):18546-18551. doi: 10.1021/jp905912n

    21. [21]

      Liu H, Ye T, Mao C. Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angew Chem Int Ed Engl, 2007,46(34):6473-6475. doi: 10.1002/(ISSN)1521-3773

    22. [22]

      Huang H, Lv J J, Zhou D L. One-Pot Green Synthesis of Nitrogen-Doped Carbon Nanoparticles as Fluorescent Probes for Mercury Ions[J]. RSC Adv, 2013,3(44):21691-21696. doi: 10.1039/c3ra43452d

    23. [23]

      Liu L Q, Li Y F, Zhan L. One-Step Synthesis of Fluorescent Hydroxyls-Coated Carbon Dots with Hydrothermal Reaction and Its Application to Optical Sensing of Metal Ions[J]. Sci China Chem, 2011,54(8):1342-1347. doi: 10.1007/s11426-011-4351-6

    24. [24]

      Shen J, Zhu Y, Yang X. Graphene Quantum Dots:Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices[J]. Chem Commun, 2012,43(29):3686-3699.  

    25. [25]

      Li L, Ji J, Fei R. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots[J]. Adv Funct Mater, 2012,22(14):2971-2979. doi: 10.1002/adfm.v22.14

    26. [26]

      Chakraborti H, Sinha S, Ghosh S. Interfacing Water Soluble Nanomaterials with Fluorescence Chemosensing:Graphene Quantum Dot to Detect Hg2+, in 100% Aqueous Solution[J]. Mater Lett, 2013,97(2):78-80.  

    27. [27]

      Qin X, Lu W, Asiri A M. Microwave-assisted Rapid Green Synthesis of Photoluminescent Carbon Nanodots from Flour and Their Applications for Sensitive and Selective Detection of Mercury(Ⅱ) Ions[J]. Sens Actuators B, 2013,184(8):156-162.  

    28. [28]

      Zhang Y L, Wang L, Zhang H C. Graphitic Carbon Quantum Dots as a Fluorescent Sensing Platform for Highly Efficient Detection of Fe3+ Ions[J]. RSC Adv, 2013,3(11):3733-3738. doi: 10.1039/c3ra23410j

    29. [29]

      Udhayakumari D, Velmathi S. Azo Linked Polycyclic Aromatic Hydrocarbons-Based Dual Chemosensor for Cu2+ and Hg2+ Ions[J]. Ind Eng Chem Res, 2015,54(14):3541-3547. doi: 10.1021/acs.iecr.5b00775

    30. [30]

      Lin W C, Wu C Y, Liu Z H. A New Selective Colorimetric and Fluorescent Sensor for Hg2+ and Cu2+.Based on a Thiourea Featuring a Pyrene Unit[J]. Talanta, 2010,81(4/5):1209-1215.  

    31. [31]

      Martí nez R, Zapata F, Caballero A. 2-Aza-1, 3-butadiene Derivatives Featuring an Anthracene or Pyrene Unit:Highly Selective Colorimetric and Fluorescent Signaling of Cu2+ Cation[J]. Org Lett, 2006,8(15):3235-3238. doi: 10.1021/ol0610791

    32. [32]

      Ye H, Ge F, Chen X C. A New Probe for Fluorescent Recognition of Hg2+, in Living Cells and Colorimetric Detection of Cu2+, in Aqueous Solution[J]. Sens Actuators B, 2013,182(3):273-279.  

    33. [33]

      Jun S K, Myung G C, Ki C S. Ratiometric Determination of Hg2+ Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide[J]. Org Lett, 2007,9(6):1129-1132.  

    34. [34]

      Liu Y, Ouyang Q, Li H. Turn-On Fluoresence Sensor for Hg2+ in Food Based on FRET Between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles[J]. J Agric Food Chem, 2018,66(24):6188-6195. doi: 10.1021/acs.jafc.8b00546

    35. [35]

      Zhang Y M, Shi B B, Peng Z. A Highly Selective Dual-Channel Hg2+, Chemosensor Based on an Easy to Prepare Double Naphthalene Schiff Base[J]. Sci China Chem, 2013,56(5):612-618. doi: 10.1007/s11426-012-4798-0

    36. [36]

      Moon S Y, Cha N R, Kim Y H. New Hg2+-Selective Chromo-and Fluoroionophore Based upon 8-Hydroxyquinoline[J]. J Org Chem, 2004,69(1):181-183.  

    37. [37]

      Dai B N, Cao Q Y, Wang L. A New Naphthalene-Containing Triazolophane for Fluorescence Sensing of Mercury(Ⅱ) Ion[J]. Inorg Chim Acta, 2014,423:163-167. doi: 10.1016/j.ica.2014.08.015

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    6. [6]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    7. [7]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    8. [8]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    9. [9]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(8)
  • Abstract views(683)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return