Citation: YAN Bing, XIONG Wenxu, ZHENG Shibing, ZHANG Xueqian, HUANG Weiwei. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4]quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 554-563. doi: 10.11944/j.issn.1000-0518.2019.05.180231 shu

Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4]quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries

  • Corresponding author: HUANG Weiwei, huangweiwei@ysu.edu.cn
  • Received Date: 2 July 2018
    Revised Date: 13 September 2018
    Accepted Date: 9 October 2018

    Fund Project: the Natural Science Foundation of Hebei Province of China B2015203124the National Natural Science Foundation of China 21403187Supported by the National Natural Science Foundation of China(No.21403187), the Natural Science Foundation of Hebei Province of China(No.B2015203124)

Figures(5)

  • The dissolution of calix[4]quinone(C4Q) in electrolytes can be inhibited by the C4Q/CMK-3(mesoporous carbon) nanocomposites prepared through perfusion method, but the electrochemical performance of the nanocomposites needs to be further improved. We prepared a serious of C4Q/CMK-3/SWCNTs(single-walled carbon nanotubes) composites with different ratio by deaerating-stirring method. In these composites, SWCNTs substituted conductive carbon blacks Super-P of the original C4Q/CMK-3 composites, which also reduced the content of CMK-3. SEM and electrochemical tests are conducted to investigate the relation of the morphology and electrochemical performance that cased by SWCNTs. The results show that the optimum mass ratio was m(C4Q):m(CMK-3):m(SWCNTs)=(1:1:1), which shows a capacity retention of 55% after 100 cycles at 0.1 C. Even at 1 C, the discharge capacity is still 260 mA·h/g. The significant improvement in the electrochemical performance could be ascribed to the formation of three-dimensional conductive network by SWCNTs.
  • 加载中
    1. [1]

      Sripad S, Viswanathan V. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles:Challenges and Opportunities[J]. J Electrochem Soc, 2017,164(11):E3635-E3646. doi: 10.1149/2.0671711jes

    2. [2]

      Zhang K, Han X P, Hu Z. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion[J]. Chem Soc Rev, 2015,44(3):699-728. doi: 10.1039/C4CS00218K

    3. [3]

      Larcher D, Tarascon J. Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat Chem, 2015,7(1):19-29.  

    4. [4]

      Al Sadat W I, Archer L A. The O2-assisted Al/CO2 Electrochemical Cell:A System for CO2 Capture/Conversion and Electric Power Generation[J]. Sci Adv, 2016,2(7)e1600968. doi: 10.1126/sciadv.1600968

    5. [5]

      Amine K, Kanno R, Tzeng Y. Rechargeable Lithium Batteries and Beyond:Progress, Challenges, and Future Directions[J]. MRS Bull, 2014,39(5):395-401. doi: 10.1557/mrs.2014.62

    6. [6]

      Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a

    7. [7]

      Fergus J W. Recent Developments in Cathode Materials for Lithium Ion Batteries[J]. J Power Sources, 2010,195(4):939-954. doi: 10.1016/j.jpowsour.2009.08.089

    8. [8]

      Goodenough J B, Kim Y. Challenges for Rechargeable Li-Ion Batteries[J]. Chem Mater, 2010,229(3):587-603.  

    9. [9]

      Zhang K, Hu Z, Tao Z L. Inorganic & Organic Materials for Rechargeable Li Batteries with Multi-electron Reaction[J]. China Mater, 2014,57(1):42-58.  

    10. [10]

      Shi Y, Peng L L, Ding Y. Nanostructured Conductive Polymers for Advanced Energy Storage[J]. Chem Soc Rev, 2015,44(19):6684-6696. doi: 10.1039/C5CS00362H

    11. [11]

      HUANG Weiei, YAN Bing, SUN Huimin. Organic Cathode Materials for Sodiumion Batteries[J]. J Yanshan Univ, 2018,42(3):189-198. doi: 10.3969/j.issn.1007-791X.2018.03.001

    12. [12]

      Yokoji T, Matsubara H, Satoh M. Rechargeable Organic Lithium-Ion Batteries Using Electron-Deficient Benzoquinones as Positive-Electrode Materials with High Discharge Voltages[J]. J Mater Chem A, 2014,2(45):19347-19354. doi: 10.1039/C4TA02812K

    13. [13]

      Lv M X, Zhang F, Wu Y F. Heteroaromatic Organic Compound with Conjugated Multi-carbonyl as Cathode Material for Rechargeable Lithium Batteries[J]. Sci Rep, 2016,6(4):2045-2322.  

    14. [14]

      Emanuelsson R, Sterby M, Strømme M. An All-Organic Proton Battery[J]. J Am Chem Soc, 2017,139(13):4828-4834. doi: 10.1021/jacs.7b00159

    15. [15]

      Luo Z Q, Liu L, Zhao Q. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries[J]. J Am Chem Soc, 2017,129(41):12561-12565.  

    16. [16]

      Huang W W, Zhu Z Q, Wang L J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4] quinone Cathode and Gel Polymer Electrolyte[J]. Angew Chem Int Ed, 2013,125(35):9162-9166.

    17. [17]

      Häupler B, Wild A, Schubert U S. Carbonyls:Powerful Organic Materials for Secondary Batteries[J]. Adv Energy Mater, 2015,5(11):32-41.  

    18. [18]

      Zheng S B, Sun H M, Yan B. High-Capacity Organic Electrode Material Calix[4] quinone/CMK-3 Nanocomposite for Lithium Batteries[J]. Sci China Mater, 2018:1-6.

    19. [19]

      Zheng S B, Hu J Y, Huang W W. Inorganic-Organic Nanocomposites Calix[4] quinone (C4Q)/CMK-3 as Cathode Materials for High-Capacity Sodium Batteries[J]. Inorg Chem Front, 2017,4(11):1806-1812. doi: 10.1039/C7QI00453B

    20. [20]

      Zhu Z Q, Chen J. Review-Advanced Carbon-Supported Organic Electrode Materials for Lithium(Sodium)-Ion Batteries[J]. J Electrochem Soc, 2015,162(14):A2393-A2405. doi: 10.1149/2.0031514jes

    21. [21]

      Song Z P, Zhou H. Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energ Environ Sci, 2013,6(8):2280-2301. doi: 10.1039/c3ee40709h

    22. [22]

      Yabuuchi N, Kubota K, Dahbi M. Research Development on Sodium-Ion Batteries[J]. Chem Rev, 2014,114(23):11636-11682. doi: 10.1021/cr500192f

    23. [23]

      Xiang X D, Zhang K, Chen J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries[J]. Adv Mater, 2015,27(36):5343-5348. doi: 10.1002/adma.201501527

    24. [24]

      Yao Y, Wu F. Naturally Derived Nanostructured Materials from Biomass for Rechargeable Lithium/Sodium Batteries[J]. Nano Energy, 2015,17(17):91-103.  

    25. [25]

      Kim Y Z, Wu W, Chun S E. Biologically Derived Melanin Electrodes in Aqueous Sodium-Ion Energy Storage Devices[J]. Proc Natl Acad Sci USA, 2013,110(52):20912-20917. doi: 10.1073/pnas.1314345110

    26. [26]

      Zhao Q, Huang W W, Luo Z Q. Forecasting and Monitoring Active Sites of Sustainable Quinone Electrodes for High-capacity and Safe Aqueous Zinc Batteries[J]. Sci Adv, 2018,4(3)eaao1761. doi: 10.1126/sciadv.aao1761

    27. [27]

      Pan B, Zhou D, Huang J. 2, 5-Dimethoxy-1, 4-Benzoquinone(DMBQ) as Organic Cathode for Rechargeable Magnesium-Ion Batteries[J]. J Electrochem Soc, 2016,163(3):A580-A583. doi: 10.1149/2.0021605jes

    28. [28]

      Ebbesen T W, Lezec H J, Hiura H. Electrical Conductivity of Individual Carbon Nanotubes[J]. Nature, 1996,382(6586):54-56. doi: 10.1038/382054a0

    29. [29]

      Ishii Y, Tashiro K, Hosoe K. Electrochemical Lithium-Ion Storage Properties of Quinone Molecules Encapsulated in Single-Walled Carbon nanotubes[J]. Phys Chem Chem Phys, 2016,18(15):10411-10418. doi: 10.1039/C6CP01103A

    30. [30]

      Wu H P, Wang K, Meng Y N. An Organic Cathode Material Based on a Polyimide/CNT Nanocomposite for Lithium Ion Batteries[J]. J Mater Chem A, 2013,1(21):6366-6372. doi: 10.1039/c3ta10473g

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(6)
  • Abstract views(846)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return