Research Progress of Electrochemiluminescence Sensors in the Field of Agricultural Sensing
- Corresponding author: LI Libo, lbli@ujs.edu.cn YOU Tianyan, youty@ujs.edu.cn
Citation:
ZHANG Jiayi, LUO Lijun, LIU Xiaohong, LI Libo, CHENG Liang, CAO Dawei, YOU Tianyan. Research Progress of Electrochemiluminescence Sensors in the Field of Agricultural Sensing[J]. Chinese Journal of Applied Chemistry,
;2019, 36(4): 379-391.
doi:
10.11944/j.issn.1000-0518.2019.04.180417
WANG Jierong, HE Puming. Research on Influence of China's Grain Consumption Structure on Grain Import Trade[J]. Prices Monthly, 2016,34(6):51-54.
KONG Xiangcai, WANG Guixia. The Abatement Path of Agricultural Pollution in the Background of Supply Side Reform in Agriculture Sector[J]. Soc Sci Yunnan, 2017,37(6):53-57.
ZHANG Ningxin. Analysis on the Current Situation and Influence of Agricultural Pollution[J]. Agric Technol Service, 2015,32(12):228-228. doi: 10.3969/j.issn.1004-8421.2015.12.189
Guo J J, Zhang Y, Luo Y L. Efficient Fluorescence Resonance Energy Transfer Between Oppositely Charged CdTe Quantum Dots and Gold Nanoparticles for Turn-On Fluorescence Detection of Glyphosate[J]. Talanta, 2014,125(7):385-392.
Miao S S, Wu M S, Ma L Y. Electrochemiluminescence Biosensor for Determination of Organophosphorous Pesticides Based on Bimetallic Pt-Au/Multi-walled Carbon Nanotubes Modified Electrode[J]. Talanta, 2016,158(9):142-151.
He T, Zhu J, Nie Y. Nanobody Technology for Mycotoxin Detection:Current Status and Prospects[J]. Toxins, 2018,10(5):1-19.
Luo Y, Liu X J, Li J K. Updating Techniques on Controlling Mycotoxins-A Review[J]. Food Control, 2018,89(4):123-132.
KANG Yunbin. A Exploration into the Problem of Agricultural Pollution in China[J]. Economy Soc, 2016,38(10):71-71.
Mardones C, Palma J, Sepulveda C. Determination of Tribromophenol and Pentachlorophenol and Its Metabolite Pentachloroanisole in Asparagus Officinalis by Gas Chromatography/Mass Spectrometry[J]. J Sep Sci, 2003,26(9):923-926.
Zhou T, Xiao X H, Li G K. Microwave Accelerated Selective Soxhlet Extraction for the Determination of Organophosphorus and Carbamate Pesticides in Ginseng with Gas Chromatography/Mass Spectrometry[J]. Anal Chem, 2012,84(13):5816-5822. doi: 10.1021/ac301274r
Chen C Y, Li W J, Peng K Y. Determination of Aflatoxin M1 in Milk and Milk Powder Using High-Flow Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry[J]. J Agric Food Chem, 2005,53(22):8474-8480. doi: 10.1021/jf052142o
Gazzotti T, Lugoboni B, Zironi E. Determination of Fumonisin B1 in Bovine Milk by LC-MS/MS[J]. Food Control, 2009,20(12):1171-1174. doi: 10.1016/j.foodcont.2009.02.009
Rubert J, Soler C, Mañes J. Application of an HPLC-MS/MS Method for Mycotoxin Analysis in Commercial Baby Foods[J]. Food Chem, 2012,133(1):176-183. doi: 10.1016/j.foodchem.2011.12.035
Liang J S, Yang S L, Luo S L. Ultrasensitive Electrochemiluminescent Detection of Pentachlorophenol Using a Multiple Amplification Strategy Based on a Hybrid Material Made from Quantum Dots, Graphene, and Carbon Nanotubes[J]. Microchim Acta, 2014,181(7):759-765.
Li S H, Wu X J, Liu C H. Application of DNA Aptamers as Sensing Layers for Detection of Carbofuran by Electrogenerated Chemiluminescence Energy Transfer[J]. Anal Chim Acta, 2016,941(42):94-100.
Xia B Y, Yuan Q M, Chu M F. Directly One-Step Electrochemical Synthesis of Graphitic Carbon Nitride/graphene Hybrid and Its Application in Ultrasensitive Electrochemiluminescence Sensing of Pentachlorophenol[J]. Sens Actuat B Chem, 2016,228(2):565-572.
Babamiria B, Salimia A, Hallaj R. Switchable Electrochemiluminescence Aptasensor Coupled with Resonance Energy Transfer for Selective Attomolar Detection of Hg2+ via CdTe@CdS/Dendrimer Probe and Au Nanoparticle Quencher[J]. Biosens Bioelectron, 2018,102(4):328-335.
Du D, Huang X, Cai J. Comparison of Pesticide Sensitivity by Electrochemical Test Based on Acetylcholinesterase Biosensor[J]. Biosens Bioelectron, 2007,23(2):285-289. doi: 10.1016/j.bios.2007.05.002
Chiu H Y, Lin Z Y, Tu H L. Analysis of Glyphosate and Aminomethylphosphonic Acid by Capillary Electrophoresis with Electrochemiluminescence Detection[J]. J Chromatogr A, 2008,1177(1):195-198. doi: 10.1016/j.chroma.2007.11.042
Hung Y L, Hsiung T M, Chen Y Y. A Label-free Colorimetric Detection of Lead Ions by Controlling the Ligand Shells of Gold Nanoparticles[J]. Talanta, 2010,82(2):516-522. doi: 10.1016/j.talanta.2010.05.004
Miao W J. Electrogenerated Chemiluminescence and Its Biorelated Applications[J]. Chem Rev, 2008,108(7):2506-2553. doi: 10.1021/cr068083a
Zhang W, Xiong H W, Chen M M. Surface-Enhanced Molecularly Imprinted Electrochemiluminescence Sensor Based on Ru@SiO2 for Ultrasensitive Detection of Fumonisin B1[J]. Biosens Bioelectron, 2017,96(10):55-61.
Luo L J, Li L B, Xu X X. Determination of Pentachlorophenol by Anodic Electrochemiluminescence of Ru(bpy)32+ Based on Nitrogen-Doped Graphene Quantum Dots as Coreactant[J]. RSC Adv, 2017,7:50634-50642. doi: 10.1039/C7RA10247J
Zhou L M, Huang J S, Yang L. Enhanced Electrochemiluminescence Based on Ru(bpy)32+-Doped Silica Nanoparticles and Graphene Composite for Analysis of Melamine in Milk[J]. Anal Chim Acta, 2014,824:57-64. doi: 10.1016/j.aca.2014.03.035
Li L B, Yu B, Zhang X P. A Novel Electrochemiluminescence Sensor Based on Ru(bpy)32+/N-Doped Carbon Nanodots System for the Detection of Bisphenol A[J]. Anal Chim Acta, 2014,895:104-111.
Li L B, Liu D, Mao H P. Multifunctional Solid-state Electrochemiluminescence Sensing Platform Based on Poly(ethylenimine) Capped N-doped Carbon Dots as Novel Co-reactant[J]. Biosens Bioelectron, 2017,899:489-495.
Richter M M. Electrochemiluminescence(ECL)[J]. Chem Rev, 2004,104(6):3003-3036. doi: 10.1021/cr020373d
Bezman R, Faulkner L R. Mechanisms of Chemiluminescent Electron-Transfer Reactions.V.Absolute Measurements of Rubrene Luminescence in Benzonitrile and N, N-Dimethylformamide[J]. J Am Chem Soc, 1972,94(18):6324-6330. doi: 10.1021/ja00773a012
Rubinstein I, Bard A J. Electrogenerated Chemiluminescence.37.Aqeous ECL Systems Based on Ru(2, 2'-bipyridine)32+ and Oxalate or Organic Acid[J]. J Am Chem Soc, 1981,103(3):512-516. doi: 10.1021/ja00393a006
Fabrizio E F, Prieto I, Bard A J. Hydrocarbon Cation Radical Formation by Reduction of Peroxydisulfate[J]. J Am Chem Soc, 2000,122(20):4996-4997. doi: 10.1021/ja000307y
Collinson M M, Wightman R M. High-frequency Generation of Electrochemiluminescence at Microelectrodes[J]. Anal Chem, 1993,65(19):2576-2582. doi: 10.1021/ac00067a006
Montano L A, Ingle J D. Investigation of the Lucigenin Chemiluminescence Reaction[J]. Anal Chem, 1979,51(7):919-926. doi: 10.1021/ac50043a032
Haapakka K E, Kankare J J. The Mechanism of the Electrogenerated Chemiluminescence of Luminol in Aqueous Alkaline Solution[J]. Anal Chim Acta, 1982,138:263-275. doi: 10.1016/S0003-2670(01)85310-1
Bae Y, Myung N, Bard A J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles[J]. Nano Lett, 2004,4(6):1153-1161. doi: 10.1021/nl049516x
Fiaccabrino G C, Koudelka-Hep M, Hsueh Y T. Electrochemiluminescence of Tris(2, 2'-bipyridine)ruthenium in Water at Carbon Microelectrodes[J]. Anal Chem, 1998,70(19):4157-4161. doi: 10.1021/ac980285m
Zu Y B, Bard A J. Electrogenerated Chemiluminescence.66.The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2, 2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity[J]. Anal Chem, 2000,72(14):3223-3232. doi: 10.1021/ac000199y
Xiong C Y, Wang H J, Yuan Y L. A Novel Solid-State Ru(bpy)32+ Electrochemiluminescence Immunosensor Based on Poly(ethylenimine) and Polyamidoamine Dendrimers as Co-reactants[J]. Talanta, 2015,131(1):192-197.
Huang X M, Deng X, Qi W J. Highly Sensitive Luminol Electrochemiluminescence Immunosensor Based on Platinum-Gold Alloy Hybrid Functionalized Zinc Oxide Nanocomposites for Catalytic Amplification[J]. Sens Actuat B Chem, 2018,273(11):466-472.
Zhang Q G, Xu G F, Gong L S. An Enzyme-assisted Electrochemiluminescent Biosensor Developed on Order Mesoporous Carbons Substrate for Ultrasensitive Glyphosate Sensing[J]. Electrochim Acta, 2015,186(27):624-630.
Liang H, Song D D, Gong J M. Signal-on Electrochemiluminescence of Biofunctional CdTe Quantum Dots for Biosensing of Organophosphate Pesticides[J]. Biosens Bioelectron, 2014,53(6):363-369.
Wang B X, Zhong X, Chai Y Q. Ultrasensitive Electrochemiluminescence Biosensor for Organophosphate Pesticides Detection Based on Carboxylated Graphitic Carbon Nitride-Poly(ethylenimine) and Acetylcholinesterase[J]. Electrochim Acta, 2017,224(6):194-200.
Chen H M, Zhang H, Yuan R. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides[J]. Anal Chem, 2017,89(5):2823-2829. doi: 10.1021/acs.analchem.6b03883
Upadhyay S, Rao G R, Sharma M K. Immobilization of Acetylcholineesterase-Choline Oxidase on a Gold-Platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents[J]. Biosens Bioelectron, 2009,25(4):832-838. doi: 10.1016/j.bios.2009.08.036
Yang Y, Asiri A M, Du D. Acetylcholinesterase Biosensor Based on a Gold Nanoparticle-Polypyrrole-Reduced Graphene Oxide Nanocomposite Modified Electrode for the Amperometric Detection of Organophosphorus Pesticides[J]. Analyst, 2014,139(12):3055-3060. doi: 10.1039/c4an00068d
Rotariu L, Zamfir L G, Bala C. A Rational Design of the Multiwalled Carbon Nanotube-7, 7, 8, 8-Tetracyanoquinodimethan Sensor for Sensitive Detection of Acetylcholinesterase Inhibitors[J]. Anal Chim Acta, 2012,748(42):81-88.
Wang B X, Wang H J, Zhong X. A Highly Sensitive Electrochemiluminescence Biosensor for the Detection of Organophosphate Pesticides Based on Cyclodextrin Functionalized Graphitic Carbon Nitride and Enzyme Inhibition[J]. Chem Commun, 2016,52(28):5049-5052. doi: 10.1039/C5CC10491B
WU Zhongping, GAO Wei, YANG Hong. Feature and Application of Zirconium and Zirconium Clad Plate for Pressure Vessel[J]. Jiangsu Chem Ind, 2004,32(5):24-27.
Lin Z Y, Chen G N. Determination of Carbamates in Nature Water Based on the Enhancement of Electrochemiluminescent of Ru(bpy)32+ at the Multi-wall Carbon Nanotube-Modified Electrode[J]. Talanta, 2006,70(1):111-115. doi: 10.1016/j.talanta.2005.12.026
Li S H, Liu C H, Han B J. An Electrochemiluminescence Aptasensor Switch for Aldicarb Recognition via Ruthenium Complex-Modified Dendrimers on Multiwalled Carbon Nanotubes[J]. Microchim Acta, 2017,184(6):1669-1675. doi: 10.1007/s00604-017-2177-4
Yang S L, Liang J S, Luo S L. Supersensitive Detection of Chlorinated Phenols by Multiple Amplification Electrochemiluminescence Sensing Based on Carbon Quantum Dots/Graphene[J]. Anal Chem, 2013,85(16):7720-7725. doi: 10.1021/ac400874h
Jiang D, Du X J, Liu Q. One-Step Thermal-Treatment Route to Fabricate Well-Dispersed ZnO Nanocrystals on Nitrogen-Doped Graphene for Enhanced Electrochemiluminescence and Ultrasensitive Detection of Pentachlorophenol[J]. ACS Appl Mater Interfaces, 2015,7(5):3093-3100. doi: 10.1021/am507163z
Luo S L, Xiao H, Yang S L. Ultrasensitive Detection of Pentachlorophenol Based on Enhanced Electrochemiluminescence of Au Nanoclusters/Graphene Hybrids[J]. Sens Actuat B Chem, 2014,194(4):325-331.
Wu W Q, Xiao H, Luo S L. A Highly Stable and Effective Electrochemiluminescence Platform of Copper Oxide Nanowires Coupled with Graphene for Ultrasensitive Detection of Pentachlorophenol[J]. Sens Actuat B Chem, 2016,222(1):747-754.
Wang H F, He Y, Ji T R. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water[J]. Anal Chem, 2009,81(4):1615-1621. doi: 10.1021/ac802375a
Tang C L, Meng G W, Huang Q. A Silica Xerogel Thin Film Based Fluorescent Sensor for Pentachlorophenol Rapid Trace Detection[J]. Sens Actuat B Chem, 2012,171(172):332-337.
Wu Y H. Nano-TiO2 Dihexadecylphosphate Based Electrochemical Sensor for Sensitive Determination of Pentachlorophenol[J]. Sens Actuat B Chem, 2009,137(1):180-187. doi: 10.1016/j.snb.2008.11.005
SUN Li, HUO Jianglian, CUI Weigang. Current Methods for the Determination of Mycotoxins in Grain Products[J]. Chinese J Anal Chem, 2013,34(19):817-822.
Xu G F, Zhang S P, Zhang Q R. Magnetic Functionalized Electrospun Nanofibers for Magnetically Controlled Ultrasensitive Label-Free Electrochemiluminescent Immune Detection of Aflatoxin B1[J]. Sens Actuat B Chem, 2016,222(6):707-713.
Lv X H, Li Y Y, Cao Wei. A Label-free Electrochemiluminescence Immunosensor Based on Silver Nanoparticle Hybridized Mesoporous Carbon for the Detection of Aflatoxin B1[J]. Sens Actuat B Chem, 2014,202(4):53-59.
Wu L, Ding F, Yin W M. From Electrochemistry to Electroluminescence:Development and Application in a Ratiometric Aptasensor for Aflatoxin B1[J]. Anal Chem, 2017,89(14):7578-7585. doi: 10.1021/acs.analchem.7b01399
Lv X H, Li Y Y, Yan T. Electrochemiluminescence Modified Electrodes Based on RuSi@Ru(bpy)32+ Loaded with Gold Functioned Nanoporous CO/Co3O4 for Detection of Mycotoxin Deoxynivalenol[J]. Biosens Bioelectron, 2015,70(8):28-33.
Zheng H L, Yi H, Dai H. Fluoro-Coumarin Silicon Phthalocyanine Sensitized Integrated Electrochemiluminescence Bioprobe Constructed on TiO2 MOFs for the Sensing of Deoxynivalenol[J]. Sens Actuat B Chem, 2018,269(9):27-35.
Yang L L, Zhang Y, Li R B. Electrochemiluminescence Biosensor for Ultrasensitive Determination of Ochratoxin A in Corn Samples Based on Aptamer and Hyperbranched Rolling Circle Amplification[J]. Biosens Bioelectron, 2015,70(8):268-274.
Wang Q L, Chen M M, Zhang H Q. Solid-state Electrochemiluminescence Sensor Based on RuSi Nanoparticles Combined with Molecularly Imprinted Polymer for the Determination of Ochratoxin A[J]. Sens Actuat B Chem, 2016,222(1):264-269.
Chen M M, Wang Y, Cheng S B. Construction of Highly Efficient Resonance Energy Transfer Platform Inside a Nanosphere for Ultrasensitive Electrochemiluminescence Detection[J]. Anal Chem, 2018,90(8):5075-5081. doi: 10.1021/acs.analchem.7b05074
Gan N, Zhou J, Xiong P. An Ultrasensitive Electrochemiluminescent Immunoassay for Aflatoxin M1 in Milk, Based on Extraction by Magnetic Graphene and Detection by Antibody-Labeled CdTe Quantumn Dots-Carbon Nanotubes Nanocomposite[J]. Toxins, 2013,5(5):865-883. doi: 10.3390/toxins5050865
Wang Y G, Zhao G H, Li X J. Lectrochemiluminescent Competitive Immunosensor Based on Polyethyleneimine Capped SiO2 Nanomaterials as Labels to Release Ru(bpy)32+ Fixed in 3D Cu/Ni Oxalate for the Detection of Aflatoxin B1[J]. Biosens Bioelectron, 2018,101(3):290-296.
Tan Y, Chu X, Shen G L. A Signal-Amplified Electrochemical Immunosensorfor Aflatoxin B1 Determination in Rice[J]. Anal Biochem, 2009,387(1):82-86.
Masoomi L, Sadeghi O, Banitaba M H. A Non-enzymatic Nanomagnetic Electro-immunosensor for Determination of Aflatoxin B1 as a Model Antigen[J]. Sens Actuat B Chem, 2013,177(2):1122-1127.
Daly S J, Keating G J, Dillon P P. Development of Surface Plasmon Resonance-based Immunoassay for Aflatoxin B1[J]. J Agric Food Chem, 2000,48(11):5097-5104. doi: 10.1021/jf9911693
Dinckaya E, Kinik Ö, Sezgintürk M K. Immobilization of Anti-aflatoxin B1 Antibody by UV Polymerization of Aniline and Aflatoxin B1 Detection via Electrochemical Impedance Spectroscopy[J]. Artif Cells Blood Substit Immobil Biotechnol, 2012,40(6):385-390. doi: 10.3109/10731199.2012.696059
Shim W B, Mun H, Joung H A. Chemiluminescence Competitive Aptamer Assay for the Detection of Aflatoxin B1 in Corn Samples[J]. Food Control, 2014,36(1):30-35. doi: 10.1016/j.foodcont.2013.07.042
Xu X, Liu X J, Li Y B. A Simple and Rapid Optical Biosensor for Detection of Aflatoxin B1 Based on Competitive Dispersion of Gold Nanorods[J]. Biosens Bioelectron, 2013,47(9):361-367.
Zeng W J, Liao N, Lei Y M. Hemin as Electrochemically Regenerable Co-Reaction Accelerator for Construction of an Ultrasensitive PTCA-Based Electrochemiluminescent Aptasensor[J]. Biosens Bioelectron, 2018,100(2):490-496.
Wang Z P, Duan N, Hun X. Electrochemiluminescent Aptamer Biosensor for the Determination of Ochratoxin A at a Gold-Nanoparticles-Modified Gold Electrode Using N-(Aminobutyl)-N-ethylisoluminol as a Luminescent Label[J]. Anal Bioanal Chem, 2010,398(5):2125-2132. doi: 10.1007/s00216-010-4146-1
Yuan Y L, Wei S Q, Liu G P. Ultrasensitive Electrochemiluminescent Aptasensor for Ochratoxin A Detection with the Loop-Mediated Isothermal Amplification[J]. Anal Chim Acta, 2014,811(6):70-75.
Yang M L, Jiang B Y, Xie J Q. Electrochemiluminescence Recovery-Based Aptasensor for Sensitive Ochratoxin A Detection via Exonuclease-Catalyzed Target Recycling Amplification[J]. Talanta, 2014,125(11):45-50.
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
Shahua Huang , Xiaoming Guo , Lin Lin , Guangping Chang , Sheng Han , Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447