Citation: ZENG Bo, YANG Yanbing, LIANG Ling, YUAN Quan. Recent Advances of Liquid Biopsy for Bladder Cancer Diagnosing[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 367-378. doi: 10.11944/j.issn.1000-0518.2019.04.180412 shu

Recent Advances of Liquid Biopsy for Bladder Cancer Diagnosing

  • Corresponding author: YUAN Quan, yuanquan@whu.edu.cn
  • Received Date: 27 December 2018
    Revised Date: 2 February 2019
    Accepted Date: 3 February 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.21675120), the National Key Research and Development Program of China(No.2017YFA0208000), the Foundation for Innovative Research Groups of NSFC(No.21521063), the Ten Thousand Talents Program for Young Talent and Start-up Research Fund(No.531107050973, No.531109010053)National Natural Science Foundation of China 21675120Ten Thousand Talents Program for Young Talent and Start-up Research Fund 531109010053Ten Thousand Talents Program for Young Talent and Start-up Research Fund 531107050973National Key Research and Development Program of China 2017YFA0208000Foundation for Innovative Research Groups of NSFC 21521063

Figures(7)

  • bBladder cancer is a kind of malignant tumor with high morbidity and mortality. Usually, it only can be diagnosed at the middle or late stage, causing serious physical and mental harm to patients. Cystoscopy is the gold standard for the diagnosis of bladder cancer. However, cystoscopy is invasive to some extent. The limited sensitivity and specificity of cystoscopy are also main barriers for achieving the required early and precise diagnosis of bladder cancer. The occurrence of bladder cancer would have a significant impact on the components of blood and urine. In this regard, non-invasive liquid biopsy shows great potential for realizing early bladder cancer diagnosis. This review describes the development of liquid biopsy-based diagnostic methods for bladder cancer. The main biomarkers of bladder cancer are briefly introduced. The diagnostic methods and mechanisms of bladder cancer with liquid(such as urine and blood) as the detection objects are comprehensively discussed. In addition, the opportunities and challenges of liquid biopsy for bladder cancer diagnosis are recommended. We hope this review will provide guidance for bladder cancer-based liquid biopsy techniques.
  • 加载中
    1. [1]

      Dal Moro F, Valotto C, Guttilla A. Urinary Markers in the Everyday Diagnosis of Bladder Cancer[J]. Urologia, 2013,80(4):265-275.  

    2. [2]

      Cheng L, Davison D D, Adams J. Biomarkers in Bladder Cancer:Translational and Clinical Implications[J]. Crit Rev Oncol Hematol, 2014,89(1):73-111. doi: 10.1016/j.critrevonc.2013.08.008

    3. [3]

      Elsen S, Lerut E, Van Cleynenbreugel B. Biodistribution of Evans Blue in an Orthotopic AY-27 Rat Bladder Urothelial Cell Carcinoma Model:Implication for the Improved Diagnosis of Non-Muscle-Invasive Bladder Cancer(NMIBC) Using Dye-Guided White-Light Cystoscopy[J]. BJU Int, 2015,116(3):468-477.  

    4. [4]

      Christensen E, Birkenkamp-Demtroder K, Nordentoft I. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for Disease Surveillance in Bladder Cancer[J]. Eur Urol, 2017,71(6):961-969. doi: 10.1016/j.eururo.2016.12.016

    5. [5]

      Costa V L, Henrique R, Danielsen S A. Three Epigenetic Biomarkers, GDF15, TMEFF2, and VIM, Accurately Predict Bladder Cancer from DNA-based Analyses of Urine Samples[J]. Clin Cancer Res, 2010,16(23):5842-5851. doi: 10.1158/1078-0432.CCR-10-1312

    6. [6]

      Lei T, Zhao X, Jin S. Discovery of Potential Bladder Cancer Biomarkers by Comparative Urine Proteomics and Analysis[J]. Clin Genitourin Cancer, 2013,11(1):56-62. doi: 10.1016/j.clgc.2012.06.003

    7. [7]

      Weikert S, Krause H, Wolff I. Quantitative Evaluation of Telomerase Subunits in Urine as Biomarkers for Noninvasive Detection of Bladder Cancer[J]. Int J Cancer, 2005,117(2):274-280. doi: 10.1002/(ISSN)1097-0215

    8. [8]

      Xylinas E, Kluth L A, Rieken M. Urine Markers for Detection and Surveillance of Bladder Cancer[J]. Urol Oncol, 2014,32(3):222-229.  

    9. [9]

      Goodison S, Rosser C J, Urquidi V. Bladder Cancer Detection and Monitoring:Assessment of Urine-and Blood-based Marker Tests[J]. Mol Diagn Ther, 2013,17(2):71-84.  

    10. [10]

      Sanli O, Dobruch J, Knowles M A. Bladder Cancer[J]. Nat Rev Dis Primers, 2017,317022. doi: 10.1038/nrdp.2017.22

    11. [11]

      Dobruch J, Daneshmand S, Fisch M. Gender and Bladder Cancer:A Collaborative Review of Etiology, Biology, and Outcomes[J]. Eur Urol, 2016,69(2):300-310.  

    12. [12]

      Babjuk M, Oosterlinck W, Sylvester R. EAU Guidelines on Non-Muscle-Invasive Urothelial Carcinoma of the Bladder, the 2011 Update[J]. Eur Urol, 2011,59(6):997-1008. doi: 10.1016/j.eururo.2011.03.017

    13. [13]

      Kamat A M, Hahn N M, Efstathiou J A. Bladder Cancer[J]. The Lancet, 2016,388(10061):2796-2810. doi: 10.1016/S0140-6736(16)30512-8

    14. [14]

      Roupret M, Babjuk M, Comperat E. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma:2017 Update[J]. Eur Urol, 2018,73(1):111-122.  

    15. [15]

      Ke Z, Lai Y, Ma X. Diagnosis of Bladder Cancer from the Voided Urine Specimens Using Multi-Target Fluorescence in Situ Hybridization[J]. Oncol Lett, 2014,7(2):325-330. doi: 10.3892/ol.2013.1744

    16. [16]

      Horstmann M, Patschan O, Hennenlotter J. Combinations of Urine-based Tumour Markers in Bladder Cancer Surveillance[J]. Scand J Urol Nephrol, 2009,43(6):461-466. doi: 10.3109/00365590903296837

    17. [17]

      Urquidi V, Kim J, Chang M R. CCL18 in a Multiplex Urine-based Assay for the Detection of Bladder Cancer[J]. Plos One, 2012,7(5)e37797. doi: 10.1371/journal.pone.0037797

    18. [18]

      Ritter R, Hennenlotter J, Kuhs U. Evaluation of a New Quantitative Point-of-Care Test Platform for Urine-based Detection of Bladder Cancer[J]. Urol Oncol, 2014,32(3):337-344.  

    19. [19]

      Roobol M J, Haese A, Bjartell A. Tumour Markers in Prostate Cancer Ⅲ:Biomarkers in Urine[J]. Acta Oncol, 2011,50:85-89. doi: 10.3109/0284186X.2010.524935

    20. [20]

      Birkenkamp-Demtroder K, Christensen E, Nordentoft I. Monitoring Treatment Response and Metastatic Relapse in Advanced Bladder Cancer by Liquid Biopsy Analysis[J]. Eur Urol, 2018,73(4):535-540.  

    21. [21]

      Di Meo A, Bartlett J, Cheng Y. Liquid Biopsy:A Step Forward Towards Precision Medicine in Urologic Malignancies[J]. Mol Cancer, 2017,16(1)80.  

    22. [22]

      Chung W, Bondaruk J, Jelinek J. Detection of Bladder Cancer Using Novel DNA Methylation Biomarkers in Urine Sediments[J]. Cancer Epidemiol, 2011,20(7):1483-1491. doi: 10.1158/1055-9965.EPI-11-0067

    23. [23]

      Eissa S, Habib H, Ali E. Evaluation of Urinary Mirna-96 as a Potential Biomarker for Bladder Cancer Diagnosis[J]. Med Oncol, 2015,32(1)413. doi: 10.1007/s12032-014-0413-x

    24. [24]

      Bryan R T, Shimwell N J, Wei W. Urinary EpCAM in Urothelial Bladder Cancer Patients:Characterisation and Evaluation of Biomarker Potential[J]. Br J Cancer, 2014,110(3):679-685. doi: 10.1038/bjc.2013.744

    25. [25]

      Menendez V, Fernandez-Suarez A, Galan J A. Diagnosis of Bladder Cancer by Analysis of Urinary Fibronectin[J]. Urology, 2005,65(2):284-289.  

    26. [26]

      Sartini D, Muzzonigro G, Milanese G. Upregulation of Tissue and Urinary Nicotinamide N-Methyltransferase in Bladder Cancer:Potential for the Development of a Urine-based Diagnostic Test[J]. Cell Biochem Biophys, 2013,65(3):473-483. doi: 10.1007/s12013-012-9451-1

    27. [27]

      Yang D, Song X, Zhang J. Therapeutic Potential of siRNA-Mediated Combined Knockdown of the IAP Genes(Livin, XIAP, and Survivin) on Human Bladder Cancer T24 Cells[J]. Acta Biochim Biophys Sin, 2010,42(2):137-144. doi: 10.1093/abbs/gmp118

    28. [28]

      Duan R, Wang B, Zhang T. Sensitive and Bidirectional Detection of Urine Telomerase Based on the Four Detection-Color States of Difunctional Gold Nanoparticle Probe[J]. Anal Chem, 2014,86(19):9781-9785. doi: 10.1021/ac5024364

    29. [29]

      Li X, Wang Y, Xu J. Sandwich ELISA for Detecting Urinary Survivin in Bladder Cancer[J]. Chinese J Cancer Res, 2013,25(4):375-381.  

    30. [30]

      May M, Hakenberg O W, Gunia S. Comparative Diagnostic Value of Urine Cytology, UBC-ELISA, and Fluorescence in Situ Hybridization for Detection of Transitional Cell Carcinoma of Urinary Bladder in Routine Clinical Practice[J]. Urology, 2007,70(3):449-453.  

    31. [31]

      Konety B R, Nguyen T S T, Brenes G. Clinical Usefulness of the Novel Marker BLCA-4 for the Detection of Bladder Cancer[J]. J Urol, 2000,164(3):634-639.  

    32. [32]

      Cheng L, Davison D D, Adams J. Biomarkers in Bladder Cancer:Translational and Clinical Implications[J]. Crit Rev Oncol Hematol, 2014,89(1):73-111. doi: 10.1016/j.critrevonc.2013.08.008

    33. [33]

      Goodison S, Rosser C J, Urquidi V. Bladder Cancer Detection and Monitoring:Assessment of Urine-and Blood-based Marker Tests[J]. Mol Diagn Ther, 2013,17(2):71-84.  

    34. [34]

      Ritter R, Hennenlotter J, Kuhs U. Evaluation of a New Quantitative Point-of-Care Test Platform for Urine-based Detection of Bladder Cancer[J]. Urol Oncol-Semin Ori, 2014,32(3):337-344. doi: 10.1016/j.urolonc.2013.09.024

    35. [35]

      Wang J, Wang Y, Hu X. Dual-Aptamers-Conjugated Molecular Modulator for Detecting Bioactive Metal Ions and Inhibiting Metal-Mediated Protein Aggregation[J]. Anal Chem, 2019,91(1):823-829. doi: 10.1021/acs.analchem.8b03007

    36. [36]

      Li D, Liang L, Tang Y W. Direct and Single-Step Sensing of Primary Ovarian Cancers Related Glycosidases[J]. Chinese Chem Lett, 2018. doi: 10.1016/j.cclet.2018.12.022

    37. [37]

      Tan Y, Hu X, Liu M. Simultaneous Visualization and Quantitation of Multiple Steroid Hormones Based on Signal-Amplified Biosensing with Duplex Molecular Recognition[J]. Chem Eur J, 2017,23(44):10683-10689. doi: 10.1002/chem.v23.44

    38. [38]

      Yao Q, Wang Y, Wang J. An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification[J]. ACS Nano, 2018,12(7):6777-6783. doi: 10.1021/acsnano.8b01950

    39. [39]

      Huang C, Wang J, Lv X. Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect":Implications for Single Base Mutation Detection[J]. Langmuir, 2018,34(23):6777-6783. doi: 10.1021/acs.langmuir.8b01248

    40. [40]

      Wang J, Ma Q, Zheng W. One-Dimensional Luminous Nanorods Featuring Tunable Persistent Luminescence for Autofluorescence-Free Biosensing[J]. ACS Nano, 2017,11(8):8185-8191. doi: 10.1021/acsnano.7b03128

    41. [41]

      Hu X, Wang Y, Liu H. Naked Eye Detection of Multiple Tumor-Related mRNAs from Patients with Photonic-Crystal Micropattern Supported Dual-Modal Upconversion Bioprobes[J]. Chem Sci, 2017,8(1):466-472.  

    42. [42]

      He A, Liu T C, Dong Z N. A Novel Immunoassay for the Quantization of CYFRA 21-1 in Human Serum[J]. J Clin Lab Anal, 2013,27(4):277-283. doi: 10.1002/jcla.21597

    43. [43]

      Lou X, Zhuang Y, Zuo X. Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AIEgens[J]. Anal Chem, 2015,87(13):6822-6827. doi: 10.1021/acs.analchem.5b01099

    44. [44]

      Duan R, Zhang Z, Zheng F. Combining Protein and miRNA Quantification for Bladder Cancer Analysis[J]. ACS Appl Mater Interfaces, 2017,9(28):23420-23427. doi: 10.1021/acsami.7b05639

    45. [45]

      Zhuang Y, Xu Q, Huang F. Ratiometric Fluorescent Bioprobe for Highly Reproducible Detection of Telomerase in Bloody Urines of Bladder Cancer Patients[J]. ACS Sens, 2016,1(5):572-578. doi: 10.1021/acssensors.6b00076

    46. [46]

      Gogalic S, Sauer U, Doppler S. Bladder Cancer Biomarker Array to Detect Aberrant Levels of Proteins in Urine[J]. Analyst, 2015,140(3):724-735. doi: 10.1039/C4AN01432D

    47. [47]

      Bubendorf L. Multiprobe Fluorescence in Situ Hybridization(UroVysion) for the Detection of Urothelial Carcinoma-FISHing for the Right Catch[J]. Acta Cytol, 2011,55(2):113-119. doi: 10.1159/000323652

    48. [48]

      Wu L, Wang J, Feng L. Label-free Ultrasensitive Detection of Human Telomerase Activity Using Porphyrin-Functionalized Graphene and Electrochemiluminescence Technique[J]. Adv Mater, 2012,24(18):2447-2452. doi: 10.1002/adma.201200412

    49. [49]

      Yang Y B, Yang X D, Zou X M. Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors[J]. Adv Funct Mater, 2017,27(19)1604096. doi: 10.1002/adfm.v27.19

    50. [50]

      Han T Q, Li X J, Li Y Y. Gold Nanoparticles Enhanced Electrochemiluminescence of Graphite-Like Carbon Nitride for the Detection of Nuclear Matrix Protein 22[J]. Sens Actuators, B, 2014,205:176-183. doi: 10.1016/j.snb.2014.08.070

    51. [51]

      Ma H, Zhang X, Li X. Electrochemical Immunosensor for Detecting Typical Bladder Cancer Biomarker Based on Reduced Graphene Oxide-Tetraethylene Pentamine and Trimetallic AuPdPt Nanoparticles[J]. Talanta, 2015,143:77-82. doi: 10.1016/j.talanta.2015.05.029

    52. [52]

      Wu D, Wang Y, Zhang Y. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 Based on NH2-SAPO-34 Supported Pd/Co Nanoparticles[J]. Sci Rep, 2016,624551. doi: 10.1038/srep24551

    53. [53]

      Liu Y J, Wei M, Liu X. Label-Free Ultrasensitive Detection of Telomerase Activity via Multiple Telomeric Hemin/G-Quadruplex Triggered Polyaniline Deposition and a DNA Tetrahedron-Structure Regulated Signal[J]. Chem Commun, 2016,52(9):1796-1799. doi: 10.1039/C5CC09800A

    54. [54]

      Jia H, Gao P, Ma H. Preparation of Au-Pt Nanostructures by Combining Top-Down with Bottom-Up Strategies and Application in Label-Free Electrochemical Immunosensor for Detection of NMP22[J]. Bioelectrochemistry, 2015,101:22-27. doi: 10.1016/j.bioelechem.2014.06.012

    55. [55]

      Wang J, Shen H J, Huang C. Highly Efficient and Multidimensional Extraction of Targets from Complex Matrices Using Aptamer-Driven Recognition[J]. Nano Res, 2016,10(1):145-156.  

    56. [56]

      Li N, Wang Y L, Li Y Y. A Label-Free Electrochemical Immunosensor Based on Au@Pd/Ag Yolk-Bimetallic Shell Nanoparticles and Amination Graphene for Detection of Nuclear Matrix Protein 22[J]. Sens Actuators, B, 2014,202:67-73. doi: 10.1016/j.snb.2014.05.077

    57. [57]

      Eissa S, Badr S, Barakat M. The Diagnostic Efficacy of Urinary Survivin and Hyaluronidase mRNA as Urine Markers in Patients with Bladder Cancer[J]. Clin Lab, 2013,59(7/8):893-900.  

    58. [58]

      Eissa S, Swellam M, Shehata H. Expression of HYAL1 and Survivin RNA as Diagnostic Molecular Markers for Bladder Cancer[J]. J Urol, 2010,183(2):493-498. doi: 10.1016/j.juro.2009.10.024

    59. [59]

      Lu W, Wang J, Wu Q. High-throughput Sample-to-Answer Detection of DNA/RNA in Crude Samples Within Functionalized Micro-pipette Tips[J]. Biosen Bioelectron, 2016,75:28-33. doi: 10.1016/j.bios.2015.08.016

    60. [60]

      Lu W, Chen Y, Liu Z. Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing[J]. ACS Nano, 2016,10(7):6685-6692. doi: 10.1021/acsnano.6b01903

    61. [61]

      Yosef H K, Krauss S D, Lechtonen T. Noninvasive Diagnosis of High-Grade Urothelial Carcinoma in Urine by Raman Spectral Imaging[J]. Anal Chem, 2017,89(12):6893-6899. doi: 10.1021/acs.analchem.7b01403

    62. [62]

      Lin H K, Zheng S, Williams A J. Portable Filter-based Microdevice for Detection and Characterization of Circulating Tumor Cells[J]. Clin Cancer Res, 2010,16(20):5011-5018. doi: 10.1158/1078-0432.CCR-10-1105

    63. [63]

      Appel J H, Ren H, Sin M L Y. Rapid Bladder Cancer Cell Detection from Clinical Urine Samples Using an Ultra-thin Silicone Membrane[J]. Analyst, 2016,141(2):652-660. doi: 10.1039/C5AN01616A

    64. [64]

      Wen H, Lee T, You S. Urinary Metabolite Profiling Combined with Computational Analysis Predicts Interstitial Cystitis-Associated Candidate Biomarkers[J]. J Proteome Res, 2015,14(1):541-548. doi: 10.1021/pr5007729

    65. [65]

      Yu T, Dai P P, Xu J J. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification[J]. ACS Appl Mater Interfaces, 2016,8(7):4434-4441. doi: 10.1021/acsami.5b12117

    66. [66]

      Jeong S, Park Y, Cho Y. Diagnostic Values of Urine CYFRA21-1, NMP22, UBC, and FDP for the Detection of Bladder Cancer[J]. Clin Chim Acta, 2012,414:93-100. doi: 10.1016/j.cca.2012.08.018

    67. [67]

      Kibar Y, Goktas S, Kilic S. Prognostic Value of Cytology, Nuclear Matrix Protein 22(NMP22) Test, and Urinary Bladder Cancer Ⅱ(UBC Ⅱ) Test in Early Recurrent Transitional Cell Carcinoma of the Bladder[J]. Ann Clin Lab Sci, 2006,36(1):31-38.

    68. [68]

      Mian C, Lodde M, Haitel A. Comparison of the Monoclonal UBC-ELISA Test and the NMP22 ELISA Test for the Detection of Urothelial Cell Carcinoma of the Bladder[J]. Urology, 2000,55(2):223-226. doi: 10.1016/S0090-4295(99)00383-0

    69. [69]

      Giannopoulos A, Manousakas T, Gounari A. Comparative Evaluation of the Diagnostic Performance of the BTA Stat Test, NMP22 and Urinary Bladder Cancer Antigen for Primary and Recurrent Bladder Tumors[J]. J Urology, 2001,166(2):470-475. doi: 10.1016/S0022-5347(05)65965-4

    70. [70]

      Sullivan P S, Nooraie F, Sanchez H. Comparison of ImmunoCyt, UroVysion, and Urine Cytology in Detection of Recurrent Urothelial Carcinoma:A "Split-Sample" Study[J]. Cancer, 2009,117(3):167-173.  

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    12. [12]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

Metrics
  • PDF Downloads(11)
  • Abstract views(1012)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return