Recent Advances of Liquid Biopsy for Bladder Cancer Diagnosing
- Corresponding author: YUAN Quan, yuanquan@whu.edu.cn
Citation:
ZENG Bo, YANG Yanbing, LIANG Ling, YUAN Quan. Recent Advances of Liquid Biopsy for Bladder Cancer Diagnosing[J]. Chinese Journal of Applied Chemistry,
;2019, 36(4): 367-378.
doi:
10.11944/j.issn.1000-0518.2019.04.180412
Dal Moro F, Valotto C, Guttilla A. Urinary Markers in the Everyday Diagnosis of Bladder Cancer[J]. Urologia, 2013,80(4):265-275.
Cheng L, Davison D D, Adams J. Biomarkers in Bladder Cancer:Translational and Clinical Implications[J]. Crit Rev Oncol Hematol, 2014,89(1):73-111. doi: 10.1016/j.critrevonc.2013.08.008
Elsen S, Lerut E, Van Cleynenbreugel B. Biodistribution of Evans Blue in an Orthotopic AY-27 Rat Bladder Urothelial Cell Carcinoma Model:Implication for the Improved Diagnosis of Non-Muscle-Invasive Bladder Cancer(NMIBC) Using Dye-Guided White-Light Cystoscopy[J]. BJU Int, 2015,116(3):468-477.
Christensen E, Birkenkamp-Demtroder K, Nordentoft I. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for Disease Surveillance in Bladder Cancer[J]. Eur Urol, 2017,71(6):961-969. doi: 10.1016/j.eururo.2016.12.016
Costa V L, Henrique R, Danielsen S A. Three Epigenetic Biomarkers, GDF15, TMEFF2, and VIM, Accurately Predict Bladder Cancer from DNA-based Analyses of Urine Samples[J]. Clin Cancer Res, 2010,16(23):5842-5851. doi: 10.1158/1078-0432.CCR-10-1312
Lei T, Zhao X, Jin S. Discovery of Potential Bladder Cancer Biomarkers by Comparative Urine Proteomics and Analysis[J]. Clin Genitourin Cancer, 2013,11(1):56-62. doi: 10.1016/j.clgc.2012.06.003
Weikert S, Krause H, Wolff I. Quantitative Evaluation of Telomerase Subunits in Urine as Biomarkers for Noninvasive Detection of Bladder Cancer[J]. Int J Cancer, 2005,117(2):274-280. doi: 10.1002/(ISSN)1097-0215
Xylinas E, Kluth L A, Rieken M. Urine Markers for Detection and Surveillance of Bladder Cancer[J]. Urol Oncol, 2014,32(3):222-229.
Goodison S, Rosser C J, Urquidi V. Bladder Cancer Detection and Monitoring:Assessment of Urine-and Blood-based Marker Tests[J]. Mol Diagn Ther, 2013,17(2):71-84.
Sanli O, Dobruch J, Knowles M A. Bladder Cancer[J]. Nat Rev Dis Primers, 2017,317022. doi: 10.1038/nrdp.2017.22
Dobruch J, Daneshmand S, Fisch M. Gender and Bladder Cancer:A Collaborative Review of Etiology, Biology, and Outcomes[J]. Eur Urol, 2016,69(2):300-310.
Babjuk M, Oosterlinck W, Sylvester R. EAU Guidelines on Non-Muscle-Invasive Urothelial Carcinoma of the Bladder, the 2011 Update[J]. Eur Urol, 2011,59(6):997-1008. doi: 10.1016/j.eururo.2011.03.017
Kamat A M, Hahn N M, Efstathiou J A. Bladder Cancer[J]. The Lancet, 2016,388(10061):2796-2810. doi: 10.1016/S0140-6736(16)30512-8
Roupret M, Babjuk M, Comperat E. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma:2017 Update[J]. Eur Urol, 2018,73(1):111-122.
Ke Z, Lai Y, Ma X. Diagnosis of Bladder Cancer from the Voided Urine Specimens Using Multi-Target Fluorescence in Situ Hybridization[J]. Oncol Lett, 2014,7(2):325-330. doi: 10.3892/ol.2013.1744
Horstmann M, Patschan O, Hennenlotter J. Combinations of Urine-based Tumour Markers in Bladder Cancer Surveillance[J]. Scand J Urol Nephrol, 2009,43(6):461-466. doi: 10.3109/00365590903296837
Urquidi V, Kim J, Chang M R. CCL18 in a Multiplex Urine-based Assay for the Detection of Bladder Cancer[J]. Plos One, 2012,7(5)e37797. doi: 10.1371/journal.pone.0037797
Ritter R, Hennenlotter J, Kuhs U. Evaluation of a New Quantitative Point-of-Care Test Platform for Urine-based Detection of Bladder Cancer[J]. Urol Oncol, 2014,32(3):337-344.
Roobol M J, Haese A, Bjartell A. Tumour Markers in Prostate Cancer Ⅲ:Biomarkers in Urine[J]. Acta Oncol, 2011,50:85-89. doi: 10.3109/0284186X.2010.524935
Birkenkamp-Demtroder K, Christensen E, Nordentoft I. Monitoring Treatment Response and Metastatic Relapse in Advanced Bladder Cancer by Liquid Biopsy Analysis[J]. Eur Urol, 2018,73(4):535-540.
Di Meo A, Bartlett J, Cheng Y. Liquid Biopsy:A Step Forward Towards Precision Medicine in Urologic Malignancies[J]. Mol Cancer, 2017,16(1)80.
Chung W, Bondaruk J, Jelinek J. Detection of Bladder Cancer Using Novel DNA Methylation Biomarkers in Urine Sediments[J]. Cancer Epidemiol, 2011,20(7):1483-1491. doi: 10.1158/1055-9965.EPI-11-0067
Eissa S, Habib H, Ali E. Evaluation of Urinary Mirna-96 as a Potential Biomarker for Bladder Cancer Diagnosis[J]. Med Oncol, 2015,32(1)413. doi: 10.1007/s12032-014-0413-x
Bryan R T, Shimwell N J, Wei W. Urinary EpCAM in Urothelial Bladder Cancer Patients:Characterisation and Evaluation of Biomarker Potential[J]. Br J Cancer, 2014,110(3):679-685. doi: 10.1038/bjc.2013.744
Menendez V, Fernandez-Suarez A, Galan J A. Diagnosis of Bladder Cancer by Analysis of Urinary Fibronectin[J]. Urology, 2005,65(2):284-289.
Sartini D, Muzzonigro G, Milanese G. Upregulation of Tissue and Urinary Nicotinamide N-Methyltransferase in Bladder Cancer:Potential for the Development of a Urine-based Diagnostic Test[J]. Cell Biochem Biophys, 2013,65(3):473-483. doi: 10.1007/s12013-012-9451-1
Yang D, Song X, Zhang J. Therapeutic Potential of siRNA-Mediated Combined Knockdown of the IAP Genes(Livin, XIAP, and Survivin) on Human Bladder Cancer T24 Cells[J]. Acta Biochim Biophys Sin, 2010,42(2):137-144. doi: 10.1093/abbs/gmp118
Duan R, Wang B, Zhang T. Sensitive and Bidirectional Detection of Urine Telomerase Based on the Four Detection-Color States of Difunctional Gold Nanoparticle Probe[J]. Anal Chem, 2014,86(19):9781-9785. doi: 10.1021/ac5024364
Li X, Wang Y, Xu J. Sandwich ELISA for Detecting Urinary Survivin in Bladder Cancer[J]. Chinese J Cancer Res, 2013,25(4):375-381.
May M, Hakenberg O W, Gunia S. Comparative Diagnostic Value of Urine Cytology, UBC-ELISA, and Fluorescence in Situ Hybridization for Detection of Transitional Cell Carcinoma of Urinary Bladder in Routine Clinical Practice[J]. Urology, 2007,70(3):449-453.
Konety B R, Nguyen T S T, Brenes G. Clinical Usefulness of the Novel Marker BLCA-4 for the Detection of Bladder Cancer[J]. J Urol, 2000,164(3):634-639.
Cheng L, Davison D D, Adams J. Biomarkers in Bladder Cancer:Translational and Clinical Implications[J]. Crit Rev Oncol Hematol, 2014,89(1):73-111. doi: 10.1016/j.critrevonc.2013.08.008
Goodison S, Rosser C J, Urquidi V. Bladder Cancer Detection and Monitoring:Assessment of Urine-and Blood-based Marker Tests[J]. Mol Diagn Ther, 2013,17(2):71-84.
Ritter R, Hennenlotter J, Kuhs U. Evaluation of a New Quantitative Point-of-Care Test Platform for Urine-based Detection of Bladder Cancer[J]. Urol Oncol-Semin Ori, 2014,32(3):337-344. doi: 10.1016/j.urolonc.2013.09.024
Wang J, Wang Y, Hu X. Dual-Aptamers-Conjugated Molecular Modulator for Detecting Bioactive Metal Ions and Inhibiting Metal-Mediated Protein Aggregation[J]. Anal Chem, 2019,91(1):823-829. doi: 10.1021/acs.analchem.8b03007
Li D, Liang L, Tang Y W. Direct and Single-Step Sensing of Primary Ovarian Cancers Related Glycosidases[J]. Chinese Chem Lett, 2018. doi: 10.1016/j.cclet.2018.12.022
Tan Y, Hu X, Liu M. Simultaneous Visualization and Quantitation of Multiple Steroid Hormones Based on Signal-Amplified Biosensing with Duplex Molecular Recognition[J]. Chem Eur J, 2017,23(44):10683-10689. doi: 10.1002/chem.v23.44
Yao Q, Wang Y, Wang J. An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification[J]. ACS Nano, 2018,12(7):6777-6783. doi: 10.1021/acsnano.8b01950
Huang C, Wang J, Lv X. Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect":Implications for Single Base Mutation Detection[J]. Langmuir, 2018,34(23):6777-6783. doi: 10.1021/acs.langmuir.8b01248
Wang J, Ma Q, Zheng W. One-Dimensional Luminous Nanorods Featuring Tunable Persistent Luminescence for Autofluorescence-Free Biosensing[J]. ACS Nano, 2017,11(8):8185-8191. doi: 10.1021/acsnano.7b03128
Hu X, Wang Y, Liu H. Naked Eye Detection of Multiple Tumor-Related mRNAs from Patients with Photonic-Crystal Micropattern Supported Dual-Modal Upconversion Bioprobes[J]. Chem Sci, 2017,8(1):466-472.
He A, Liu T C, Dong Z N. A Novel Immunoassay for the Quantization of CYFRA 21-1 in Human Serum[J]. J Clin Lab Anal, 2013,27(4):277-283. doi: 10.1002/jcla.21597
Lou X, Zhuang Y, Zuo X. Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AIEgens[J]. Anal Chem, 2015,87(13):6822-6827. doi: 10.1021/acs.analchem.5b01099
Duan R, Zhang Z, Zheng F. Combining Protein and miRNA Quantification for Bladder Cancer Analysis[J]. ACS Appl Mater Interfaces, 2017,9(28):23420-23427. doi: 10.1021/acsami.7b05639
Zhuang Y, Xu Q, Huang F. Ratiometric Fluorescent Bioprobe for Highly Reproducible Detection of Telomerase in Bloody Urines of Bladder Cancer Patients[J]. ACS Sens, 2016,1(5):572-578. doi: 10.1021/acssensors.6b00076
Gogalic S, Sauer U, Doppler S. Bladder Cancer Biomarker Array to Detect Aberrant Levels of Proteins in Urine[J]. Analyst, 2015,140(3):724-735. doi: 10.1039/C4AN01432D
Bubendorf L. Multiprobe Fluorescence in Situ Hybridization(UroVysion) for the Detection of Urothelial Carcinoma-FISHing for the Right Catch[J]. Acta Cytol, 2011,55(2):113-119. doi: 10.1159/000323652
Wu L, Wang J, Feng L. Label-free Ultrasensitive Detection of Human Telomerase Activity Using Porphyrin-Functionalized Graphene and Electrochemiluminescence Technique[J]. Adv Mater, 2012,24(18):2447-2452. doi: 10.1002/adma.201200412
Yang Y B, Yang X D, Zou X M. Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors[J]. Adv Funct Mater, 2017,27(19)1604096. doi: 10.1002/adfm.v27.19
Han T Q, Li X J, Li Y Y. Gold Nanoparticles Enhanced Electrochemiluminescence of Graphite-Like Carbon Nitride for the Detection of Nuclear Matrix Protein 22[J]. Sens Actuators, B, 2014,205:176-183. doi: 10.1016/j.snb.2014.08.070
Ma H, Zhang X, Li X. Electrochemical Immunosensor for Detecting Typical Bladder Cancer Biomarker Based on Reduced Graphene Oxide-Tetraethylene Pentamine and Trimetallic AuPdPt Nanoparticles[J]. Talanta, 2015,143:77-82. doi: 10.1016/j.talanta.2015.05.029
Wu D, Wang Y, Zhang Y. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 Based on NH2-SAPO-34 Supported Pd/Co Nanoparticles[J]. Sci Rep, 2016,624551. doi: 10.1038/srep24551
Liu Y J, Wei M, Liu X. Label-Free Ultrasensitive Detection of Telomerase Activity via Multiple Telomeric Hemin/G-Quadruplex Triggered Polyaniline Deposition and a DNA Tetrahedron-Structure Regulated Signal[J]. Chem Commun, 2016,52(9):1796-1799. doi: 10.1039/C5CC09800A
Jia H, Gao P, Ma H. Preparation of Au-Pt Nanostructures by Combining Top-Down with Bottom-Up Strategies and Application in Label-Free Electrochemical Immunosensor for Detection of NMP22[J]. Bioelectrochemistry, 2015,101:22-27. doi: 10.1016/j.bioelechem.2014.06.012
Wang J, Shen H J, Huang C. Highly Efficient and Multidimensional Extraction of Targets from Complex Matrices Using Aptamer-Driven Recognition[J]. Nano Res, 2016,10(1):145-156.
Li N, Wang Y L, Li Y Y. A Label-Free Electrochemical Immunosensor Based on Au@Pd/Ag Yolk-Bimetallic Shell Nanoparticles and Amination Graphene for Detection of Nuclear Matrix Protein 22[J]. Sens Actuators, B, 2014,202:67-73. doi: 10.1016/j.snb.2014.05.077
Eissa S, Badr S, Barakat M. The Diagnostic Efficacy of Urinary Survivin and Hyaluronidase mRNA as Urine Markers in Patients with Bladder Cancer[J]. Clin Lab, 2013,59(7/8):893-900.
Eissa S, Swellam M, Shehata H. Expression of HYAL1 and Survivin RNA as Diagnostic Molecular Markers for Bladder Cancer[J]. J Urol, 2010,183(2):493-498. doi: 10.1016/j.juro.2009.10.024
Lu W, Wang J, Wu Q. High-throughput Sample-to-Answer Detection of DNA/RNA in Crude Samples Within Functionalized Micro-pipette Tips[J]. Biosen Bioelectron, 2016,75:28-33. doi: 10.1016/j.bios.2015.08.016
Lu W, Chen Y, Liu Z. Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing[J]. ACS Nano, 2016,10(7):6685-6692. doi: 10.1021/acsnano.6b01903
Yosef H K, Krauss S D, Lechtonen T. Noninvasive Diagnosis of High-Grade Urothelial Carcinoma in Urine by Raman Spectral Imaging[J]. Anal Chem, 2017,89(12):6893-6899. doi: 10.1021/acs.analchem.7b01403
Lin H K, Zheng S, Williams A J. Portable Filter-based Microdevice for Detection and Characterization of Circulating Tumor Cells[J]. Clin Cancer Res, 2010,16(20):5011-5018. doi: 10.1158/1078-0432.CCR-10-1105
Appel J H, Ren H, Sin M L Y. Rapid Bladder Cancer Cell Detection from Clinical Urine Samples Using an Ultra-thin Silicone Membrane[J]. Analyst, 2016,141(2):652-660. doi: 10.1039/C5AN01616A
Wen H, Lee T, You S. Urinary Metabolite Profiling Combined with Computational Analysis Predicts Interstitial Cystitis-Associated Candidate Biomarkers[J]. J Proteome Res, 2015,14(1):541-548. doi: 10.1021/pr5007729
Yu T, Dai P P, Xu J J. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification[J]. ACS Appl Mater Interfaces, 2016,8(7):4434-4441. doi: 10.1021/acsami.5b12117
Jeong S, Park Y, Cho Y. Diagnostic Values of Urine CYFRA21-1, NMP22, UBC, and FDP for the Detection of Bladder Cancer[J]. Clin Chim Acta, 2012,414:93-100. doi: 10.1016/j.cca.2012.08.018
Kibar Y, Goktas S, Kilic S. Prognostic Value of Cytology, Nuclear Matrix Protein 22(NMP22) Test, and Urinary Bladder Cancer Ⅱ(UBC Ⅱ) Test in Early Recurrent Transitional Cell Carcinoma of the Bladder[J]. Ann Clin Lab Sci, 2006,36(1):31-38.
Mian C, Lodde M, Haitel A. Comparison of the Monoclonal UBC-ELISA Test and the NMP22 ELISA Test for the Detection of Urothelial Cell Carcinoma of the Bladder[J]. Urology, 2000,55(2):223-226. doi: 10.1016/S0090-4295(99)00383-0
Giannopoulos A, Manousakas T, Gounari A. Comparative Evaluation of the Diagnostic Performance of the BTA Stat Test, NMP22 and Urinary Bladder Cancer Antigen for Primary and Recurrent Bladder Tumors[J]. J Urology, 2001,166(2):470-475. doi: 10.1016/S0022-5347(05)65965-4
Sullivan P S, Nooraie F, Sanchez H. Comparison of ImmunoCyt, UroVysion, and Urine Cytology in Detection of Recurrent Urothelial Carcinoma:A "Split-Sample" Study[J]. Cancer, 2009,117(3):167-173.
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050