Citation: ZHU Chenyang, LUO Zhixiong, CHEN Cheng, Chaemchuen Somboon, Verpoort Francis. Zeolitic Imidazolate Framework-67 Efficiently Catalyzes the Ring-Opening Polymerization of L-Lactide[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 414-422. doi: 10.11944/j.issn.1000-0518.2019.04.180398 shu

Zeolitic Imidazolate Framework-67 Efficiently Catalyzes the Ring-Opening Polymerization of L-Lactide

  • Corresponding author: Verpoort Francis, francis.verpoort@urgent.be
  • Received Date: 14 December 2018
    Revised Date: 28 January 2019
    Accepted Date: 25 February 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.21850410449)National Natural Science Foundation of China 21850410449

Figures(6)

  • To explore the metal effecting in structure of zeolitic imidazolate frameworks(ZIFs) influenced to its catalytic activity, we have synthesized ZIF-8, Zn/Co-ZIF and ZIF-67 by room temperature method and applied them as catalysts for the bulk ring-opening polymerization of L-lactide. Under the same reaction condition, ZIF-67 shows the highest catalytic activity. Compared to 2-methylimidazolate(linker) as a catalyst under the same reaction condition, the poly(lactic acid) obtained with ZIF-67 has highly isotactic structure. In addition, the matrix assisted laser desorption ionization-time of flight(MALDI-TOF) mass spectrum indicate that the poly(lactic acid) obtained with ZIF-67 has an almost linear structure. ZIF-67 can be reused for three times without significantly loss of catalytic activity.
  • 加载中
    1. [1]

      Gupta A P, Kumar V. New Emerging Trends in Synthetic Biodegradable Polymers-Polylactide:A Critique[J]. Eur Polym J, 2007,43(10):4053-4074. doi: 10.1016/j.eurpolymj.2007.06.045

    2. [2]

      Lim L T, Auras R, Rubino M. Processing Technologies for Poly(Lactic Acid)[J]. Prog Polym Sci, 2008,33(8):820-852. doi: 10.1016/j.progpolymsci.2008.05.004

    3. [3]

      Van Wouwe P, Dusselier M, Vanleeuw E. Lactide Synthesis and Chirality Control for Polylactic Acid Production[J]. ChemSusChem, 2016,9(9):907-921. doi: 10.1002/cssc.201501695

    4. [4]

      Terrade F G, Van Krieken J, Verkuijl B J V. Catalytic Cracking of Lactide and Poly(Lactic acid) to Acrylic Acid at Low Temperatures[J]. ChemSusChem, 2017,10(9):1904-1908. doi: 10.1002/cssc.201700108

    5. [5]

      Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled Ring-Opening Polymerization of Lactide and Glycolide[J]. Chem Rev, 2004,104(12):6147-6176. doi: 10.1021/cr040002s

    6. [6]

      Kricheldorf H R. Synthesis and Application of Polylactide[J]. Chemosphere, 2001,43(1):49-54. doi: 10.1016/S0045-6535(00)00323-4

    7. [7]

      Platel R H, Hodgson L M, Williams C K. Biocompatible Initiators for Lactide Polymerization[J]. Polym Rev, 2008,48(1):11-63. doi: 10.1080/15583720701834166

    8. [8]

      Tschan M J L, Brule E, Haquette P. Synthesis of Biodegradable Polymer from Renewable Resource[J]. Polym Chem, 2012,3(4):836-851. doi: 10.1039/C2PY00452F

    9. [9]

      Achmad F, Yamanishi K, Liu Z Y. The Effect of the Impurities in Refinery Process from Fermentation Broth on Lactic Acid Polymerization[J]. J Chem Eng Jpn, 2009,42(8):632-635. doi: 10.1252/jcej.09we101

    10. [10]

      Abdel-Fattah T M, Pinnavaia T J. Tin-Substituted Mesoporous Silica Molecular Sieve(Sn-HMS):Synthesis and Properties as a Heterogeneous Catalyst for Lactide Ring-Opening Polymerization[J]. Chem Commun, 1996(5):665-666. doi: 10.1039/cc9960000665

    11. [11]

      Yu K, Jones C W. Elucidating the Role of Silica Surfaces in the Ring-Opening Polymerization of Lactide:Catalytic Behavior of Silica-Immobilized Zinc β-Diiminate Complexes[J]. J Catal, 2004,222(2):558-564. doi: 10.1016/j.jcat.2003.12.004

    12. [12]

      Jones M D, Davidson M G, Keir C G. Heterogeneous Catalysts for the Controlled Ring-Opening Polymerization of rac-Lactide and Homogeneous Silsesquioxane Model Complexes[J]. Dalton Trans, 2008(28):3655-3657. doi: 10.1039/b805274c

    13. [13]

      Kim E, Shin E W, Yoo I K. Characteristics of Heterogeneous Titanium Alkoxide Catalysts for Ring-Opening Polymerization of Lactide to Produce Polylactide[J]. J Mol Catal A:Chem, 2009,298(1/2):36-39.  

    14. [14]

      Jones M D, Davidson M G, Keir C G. Zinc(Ⅱ) Homogeneous and Heterogeneous Species and Their Application for the Ring-Opening Polymerization of rac-Lactide[J]. Eur J Inorg Chem, 2009(5):635-642.

    15. [15]

      Jones M D, Keir C G, Johnson A L. Crystallographic Characterization of Novel Zn(Ⅱ) Silsesquioxane Complexes and Their Application as Initiators for the Production of Polylactide[J]. Polyhedron, 2010,29(1):312-316. doi: 10.1016/j.poly.2009.05.024

    16. [16]

      Di Iulio C, Jones M D, Mahon M F. Zinc(Ⅱ) Silsesquioxane Complexes and Their Application for the Ring-Opening Polymerization of rac-Lactide[J]. Inorg Chem, 2010,49(22):10232-10234. doi: 10.1021/ic101809r

    17. [17]

      Di Iulio C, Jones M D, Mahon M F. Synthesis of Al(Ⅲ) Silsesquioxane Complexes and Their Exploitation for the Ring Opening Polymerization of rac-Lactide[J]. J Organomet Chem, 2012,718:96-100. doi: 10.1016/j.jorganchem.2012.05.036

    18. [18]

      Wanna N, Kraithong T, Khamnaen T. Aluminum-and Calcium-Incorporated MCM-41-Type Silica as Supports for the Immobilization of Titanium(Ⅳ) Isopropoxide in Ring-Opening Polymerization of L-Lactide and ε-Caprolactone[J]. Catal Commun, 2014,45:118-123. doi: 10.1016/j.catcom.2013.11.009

    19. [19]

      Lee E J, Lee K M, Jang J. Characteristics of Silica-Supported Tin(Ⅱ) Methoxide Catalysts for Ring-Opening Polymerization(ROP) of L-Lactide[J]. J Mol Catal A:Chem, 2014,385:68-72. doi: 10.1016/j.molcata.2014.01.008

    20. [20]

      Chaemchuen S, Kabir N A, Zhou K. Metal-Organic Frameworks for Upgrading Biogas via CO2 Adsorption to Biogas Green Energy[J]. Chem Soc Rev, 2013,42(24):9304-9332. doi: 10.1039/c3cs60244c

    21. [21]

      XIAO Fan, CUI Yuanjing, QIAN Guodong. Metal-Organic Frameworks for Fluorescence Detection Applications[J]. Chinese J Appl Chem, 2018,35(9):1113-1125.  

    22. [22]

      Chaemchuen S, Luo Z, Zhou K. Defect Formation in Metal-Organic Frameworks Initiated by the Crystal Growth-Rate and Effect on Catalytic Performance[J]. J Catal, 2017,354:84-91. doi: 10.1016/j.jcat.2017.08.012

    23. [23]

      Chughtai A H, Ahmad N, Younns H A. Metal-Organic Frameworks:Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations[J]. Chem Soc Rev, 2015,44(19):6804-6849. doi: 10.1039/C4CS00395K

    24. [24]

      Chuck C J, Davidson M G, Jones M D. Air-Stable Titanium Alkoxide Based Metal-Organic Frameworks as an Initiator for Ring-Opening Polymerization of Cyclic Esters[J]. Inorg Chem, 2006,45(17):6595-6597. doi: 10.1021/ic060969+

    25. [25]

      Wu C Y, Raja D S, Yang C C. Evaluation of Structural Transformation in 2D Metal-Organic Frameworks Based on a 4, 4'-Sulfonyldibenzoate Linker:Microwave-assisted Solvothermal Synthesis, Characterization and Applications[J]. CrystEngComm, 2014,16(39):9308-9319. doi: 10.1039/C4CE01201A

    26. [26]

      Luo Z, Chaemchuen S, Zhou K. Influence of Lactic Acid on the Catalytic Performance of MDABCO for Ring-Opening Polymerization of L-Lactide[J]. Appl Catal A:Gen, 2017,546:15-21. doi: 10.1016/j.apcata.2017.08.007

    27. [27]

      Luo Z, Chaemchuen S, Zhou K. Ring-Opening Polymerization of L-Lactide to Cyclic Poly(Lactide) by Zeolitic Imidazole Framework ZIF-8 Catalyst[J]. ChemSusChem, 2017,10(21):4135-4139. doi: 10.1002/cssc.v10.21

    28. [28]

      Phan A, Doonan C J, Uribe-Romo F J. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Acc Chem Res, 2010,43(1):58-67. doi: 10.1021/ar900116g

    29. [29]

      Chen B, Yang Z, Zhu Y. Zeolitic Imidazolate Framework Materials:Recent Progress in Synthesis and Applications[J]. J Mater Chem A, 2004,2(40):16811-16831.

    30. [30]

      Chizallet C, Lazare S, Bazer-Bachi D. Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework:Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and Ab Initio Calculations[J]. J Am Chem Soc, 2010,132(35):12365-12377. doi: 10.1021/ja103365s

    31. [31]

      Tran U P N, Le K K A, Phan N T S. Expanding Applications of Metal-Organic Frameworks:Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction[J]. ACS Catal, 2011,1(2):120-127. doi: 10.1021/cs1000625

    32. [32]

      Kalidindi S B, Esken D, Fischer R A. B-N Chemistry@ZIF-8:Dehydrocoupling of Dimethylamine Borane at Room Temperature by Size-Confinement Effects[J]. Chem Eur J, 2011,17(24):6594-6597. doi: 10.1002/chem.v17.24

    33. [33]

      Mousavi B, Chaemchuen S, Moosavi B. Zeolitic Imidazole Framework-67 as an Efficient Heterogeneous Catalyst for the Conversion of CO2 to Cyclic Carbonates[J]. New J Chem, 2016,40(6):5170-5176. doi: 10.1039/C6NJ00128A

    34. [34]

      Lin K Y A, Chang H A. Zeolitic Imidazole Framework-67(ZIF-67) as a Heterogeneous Catalyst to Activate Peroxymonosulfate for Degradation of Rhodamine B in Water[J]. J Taiwan Inst Chem Eng, 2015,53:40-45. doi: 10.1016/j.jtice.2015.02.027

    35. [35]

      Coulembier O, Meyer F, Dubois P. Controlled Room Temperature ROP of L-Lactide by ICl3:A Simple Halogen-Bonding Catalyst[J]. Polym Chem, 2010,1(4):434-437. doi: 10.1039/c0py00013b

    36. [36]

      Pietrangelo A, Hillmyer M A, Tolman W B. Stereoselective and Controlled Polymerization of DL-Lactide Using Indium(Ⅲ) Trichloride[J]. Chem Commun, 2009(19):2736-2737. doi: 10.1039/b902968k

    37. [37]

      Pietrangelo A, Knight S C, Gupta A K. Mechanistic Study of the Stereoselective Polymerization of D, L-Lactide Using Indium(Ⅲ) Halides[J]. J Am Chem Soc, 2010,132(33):11649-11657. doi: 10.1021/ja103841h

    38. [38]

      Kricheldorf H R, Lomadze N, Schwarz G. Cyclic Polylactides by Imidazole-Catalyzed Polymerization of L-Lactide[J]. Macromolecules, 2008,41(21):7812-7816. doi: 10.1021/ma801519t

    39. [39]

      Blakey I, Yu A, Howdle S M. Controlled Polymerization of Lactide Using an Organo-Catalyst in Supercritical Carbon Dioxide[J]. Green Chem, 2011,13(8):2032-2037. doi: 10.1039/c1gc15344g

    40. [40]

      Coulembier O, Josse T, Guillerm B. An Imidazole-Based Organocatalyst Designed for Bulk Polymerization of Lactide Isomers:Inspiration from Nature[J]. Chem Commun, 2012,48(95):11695-11697. doi: 10.1039/c2cc37061a

    41. [41]

      Nederberg F, Connor E F, Moeller M. New Paradigms for Organic Catalysts:The First Organocatalytic Living Polymerization[J]. Angew Chem Int Ed, 2001,40(14):2712-2715. doi: 10.1002/(ISSN)1521-3773

    42. [42]

      Chizallet C, Bats N. External Surface of Zeolite Imidazolate Frameworks Viewed Ab Initio:Multifunctionality at the Organic-Inorganic Interface[J]. J Phys Chem Lett, 2010,1(1):349-353. doi: 10.1021/jz900192x

    43. [43]

      Kuruppathparambil R R, Babu R, Jeong H M. A Solid Solution Zeolitic Imidazolate Framework as a Room Temperature Efficient Catalyst for the Chemical Fixation of CO2[J]. Green Chem, 2016,18(23):6349-6356. doi: 10.1039/C6GC01614F

    44. [44]

      Zhou K, Mousavi B, Luo Z. Characterization and Properties of Zn/Co Zeolitic Imidazolate Frameworks vs. ZIF-8 and ZIF-67[J]. J Mater Chem A, 2017,5(3):952-957. doi: 10.1039/C6TA07860E

    45. [45]

      Chen Y Z, Wang C, Wu Z Y. From Bimetallic Metal-Organic Framework to Porous Carbon:High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Adv Mater, 2015,27(34):5010-5016. doi: 10.1002/adma.201502315

    46. [46]

      Kowalski A, Duda A, Penczek S. Polymerization of L, L-Lactide Initiated by Aluminum Isopropoxide Trimer or Tetramer[J]. Macromolecules, 1998,31(7):2114-2122. doi: 10.1021/ma971737k

    47. [47]

      Katiyar V, Nanavati H. Ring-Opening Polymerization of L-Lactide Using N-Heterocyclic Molecules:Mechanistic, Kinetics and DFT Studies[J]. Polym Chem, 2010,1(9):1491-1500. doi: 10.1039/c0py00125b

    48. [48]

      Frediani M, Semeril D, Mariotti A. Ring Opening Polymerization of Lactide Under Solvent-Free Conditions Catalyzed by a Chlorotitanium Calix[J]. Macromol Rapid Commun, 2008,29(18):1554-1560. doi: 10.1002/marc.v29:18

    49. [49]

      Zhang M, Ni X, Shen Z. Synthesis of Bimetallic Bis(phenolate) N-Heterocyclic Carbene Lanthanide Complexes and Their Applications in the Ring-Opening Polymerization of L-Lactide[J]. Organometallics, 2014,33(23):6861-6867. doi: 10.1021/om500930m

  • 加载中
    1. [1]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    6. [6]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    7. [7]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(2)
  • Abstract views(2269)
  • HTML views(985)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return