Citation: WU Shengli, LI Zongjun, GAO Xiang. Progress on Thiolation Reactions of Fullerenes[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 392-401. doi: 10.11944/j.issn.1000-0518.2019.04.180369 shu

Progress on Thiolation Reactions of Fullerenes

  • Corresponding author: GAO Xiang, xgao@ciac.ac.cn
  • Received Date: 16 November 2018
    Revised Date: 11 January 2019
    Accepted Date: 29 January 2019

    Fund Project: Jilin Provincial Science and Technology Department 20160520128JHSupported by the National Natural Science Foundation of China(No.21472183), Jilin Provincial Science and Technology Department(No.20170101172JC, No.20160520128JH)National Natural Science Foundation of China 21472183Jilin Provincial Science and Technology Department 20170101172JC

Figures(16)

  • Functionalization of fullerenes is an important part of fullerene chemistry. Many novel fullerene derivatives have been synthesized during recent years, and the compounds have exhibited promising potentials in biomedical chemistry and organic solar cells. Compared with the rapid development of fullerene chemistry, progress on the fullerene thiolation is slow, which has attracted more attention recently. Herein, the latest progress on the thiolation reactions of fullerenes is reviewed, which includes the recent result from our group.
  • 加载中
    1. [1]

      Echegoyen L, Echegoyen L E. Electrochemistry of Fullerenes and Their Derivatives[J]. Acc Chem Res, 1998,31(9):593-601. doi: 10.1021/ar970138v

    2. [2]

      Aguirre J C, Arntsen C, Hernandez S. Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-Based Solar Cells:Time-Resolved Microwave Conductivity and Theory[J]. Adv Funct Mater, 2014,24(6):784-792. doi: 10.1002/adfm.201301757

    3. [3]

      Liu T, Troisi A. What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them[J]. Adv Mater, 2013,25(7):1038-1041. doi: 10.1002/adma.v25.7

    4. [4]

      Nakanishi I, Fukuzumi S, Konishi T. DNA Cleavage via Superoxide Anion Formed in Photoinduced Electron Transfer from NADH to γ-Cyclodextrin-Bicapped C60 in an Oxygen-Saturated Aqueous Solution[J]. J Phys Chem B, 2002,106(9):2372-2380. doi: 10.1021/jp013215j

    5. [5]

      Yamakoshi Y, Umezawa N, Ryu A. Active Oxygen Species Generated from Photoexcited Fullerene (C60) as Potential Medicines:O2·- versus 1O2[J]. J Am Chem Soc, 2003,125(42):12803-12809. doi: 10.1021/ja0355574

    6. [6]

      Markovic Z, Trajkovic V. Biomedical Potential of the Reactive Oxygen Species Generation and Quenching by Fullerenes (C60)[J]. Biomaterials, 2008,29(26):3561-3573. doi: 10.1016/j.biomaterials.2008.05.005

    7. [7]

      Wang I C, Tai L A, Lee D D. C60 and Water-Soluble Fullerene Derivatives as Antioxidants Against Radical-Initiated Lipid Peroxidation[J]. J Med Chem, 1999,42(22):4614-4620. doi: 10.1021/jm990144s

    8. [8]

      Yin J J, Lao F, Fu P P. The Scavenging of Reactive Oxygen Species and the Potential for Cell Protection by Functionalized Fullerene Materials[J]. Biomaterials, 2009,30(4):611-621.  

    9. [9]

      Tzirakis M D, Orfanopoulos M. Radical Reactions of Fullerenes:From Synthetic Organic Chemistry to Materials Science and Biology[J]. Chem Rev, 2013,113(7):5262-5321. doi: 10.1021/cr300475r

    10. [10]

      Dennler G, Scharber M C, Brabec C J. Polymer-Fullerene Bulk-Heterojunction Solar Cells[J]. Adv Mater, 2009,21(13):1323-1338. doi: 10.1002/adma.v21:13

    11. [11]

      Matsuo Y. Design Concept for High-LUMO-Level Fullerene Electron-Acceptors for Organic Solar Cells[J]. Chem Lett, 2012,41(51):754-759.  

    12. [12]

      Li C Z, Yip H L, Jen A K Y. Functional Fullerenes for Organic Photovoltaics[J]. J Mater Chem, 2012,22(10):4161-4177. doi: 10.1039/c2jm15126j

    13. [13]

      Li Y. Fullerene-Bisadduct Acceptors for Polymer Solar Cells[J]. Chem Asian J, 2013,8(10):2316-2328. doi: 10.1002/asia.201300600

    14. [14]

      Nakamura E, Isobe H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience[J]. Acc Chem Res, 2003,36(11):807-815. doi: 10.1021/ar030027y

    15. [15]

      Bosi S, Da Ros T, Spalluto G. Fullerene Derivatives:An Attractive Tool for Biological Applications[J]. Eur J Med Chem, 2003,38(11/12):913-923.  

    16. [16]

      Bakry R, Vallant R M, Najamul H M. Medicinal Applications of Fullerenes[J]. Int J Nanomed, 2007,2(4):639-649.  

    17. [17]

      Rašović I. Water-Soluble Fullerenes for Medical Applications[J]. Mater Sci Technol, 2017,33(7):777-794. doi: 10.1080/02670836.2016.1198114

    18. [18]

      Castro E, Garcia A H, Zavala G. Fullerenes in Biology and Medicine[J]. J Mater Chem B, 2017,5(32):6523-6535. doi: 10.1039/C7TB00855D

    19. [19]

      Zhou Y, Li J, Ma H. Biocompatible[60]/[70] Fullerenols:Potent Defense Against Oxidative Injury Induced by Reduplicative Chemotherapy[J]. ACS Appl Mater Interfaces, 2017,9(41):35539-35547. doi: 10.1021/acsami.7b08348

    20. [20]

      Hirsch A, Brettreich M. Fullerenes:Chemistry and Reactions[M]. Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany:2005.

    21. [21]

      Yamada M, Akasaka T, Nagase S. Carbene Additions to Fullerenes[J]. Chem Rev, 2013,113(9):7209-7264. doi: 10.1021/cr3004955

    22. [22]

      Matsuo Y, Nakamura E. Selective Multiaddition of Organocopper Reagents to Fullerenes[J]. Chem Rev, 2008,108(8):3016-3028. doi: 10.1021/cr0684218

    23. [23]

      Lu X, Bao L P, Akasaka T. Recent Progress in the Chemistry of Endohedral Metallofullerenes[J]. Chem Commun, 2014,50(94):14701-14715. doi: 10.1039/C4CC05164E

    24. [24]

      Tzirakis M D, Orfanopoulos M. Radical Reactions of Fullerenes:From Synthetic Organic Chemistry to Materials Science and Biology[J]. Chem Rev, 2013,113(7):5262-5321. doi: 10.1021/cr300475r

    25. [25]

      Martín N. New Challenges in Fullerene Chemistry[J]. Chem Commun, 2006,37(20):2093-2104.  

    26. [26]

      Thilgen C, Diederich F. Structural Aspects of Fullerene Chemistry-A Journey Through Fullerene Chirality[J]. Chem Rev, 2006,106(12):5049-5135. doi: 10.1021/cr0505371

    27. [27]

      Ohno M, Kojima S, Eguch S. Dihydrothiopyran-fused[60] Fullerene from Hetero-Diels-Alder Reaction with Thioacrylamide and Acyl Chloride[J]. J Chem Soc, Chem Commun, 1995:565-566.

    28. [28]

      Ohno M, Kojima S, Shirakawa Y. Hetero-Diels-Alder Reaction of Fullerene:Synthesis of Thiochroman-Fused C60 with o-Thioquinone Methide and Oxidation to Its S-Oxides[J]. Tetrahedron Lett, 1995,36(38):6899-6902. doi: 10.1016/00404-0399(50)1425H-

    29. [29]

      Duczek W, Tittelbach F, Costisella B. Reaction of [60] Fullerene with 5-Imino-1, 2, 4-thiadiazolidine-3-ones:Formation of New C60-Fused Heterocycles[J]. Tetrahedron, 1996,52(26):8733-8738. doi: 10.1016/0040-4020(96)00429-2

    30. [30]

      Takaguchi Y, Katayose Y, Yanagimoto Y. Photoinduced Dithiolation of Fullerene[60] with Dendrimer Disulfide[J]. Chem Lett, 2003,32(12):1124-1125. doi: 10.1246/cl.2003.1124

    31. [31]

      Izquierdo M, Osuna S, Filippone S. On the Regioselective Intramolecular Nucleophilic Addition of Thiols to C60[J]. Eur J Org Chem, 2009:6231-6238.  

    32. [32]

      Yang X, Huang S, Jia Z. Reactivity of Fullerene Epoxide:Preparation of Fullerene-Fused Thiirane, Tetrahydrothiazolidin-2-one, and 1, 3-Dioxolane[J]. J Org Chem, 2008,73(7):2518-2526. doi: 10.1021/jo7023587

    33. [33]

      Yang X, Gan L, Wang Z. Controlled Regio-and Chemoselective Addition of Isothiocyanate to the Dione Moiety of a Cage-Opened Fullerene-Mixed Peroxide Derivative[J]. Chem Commun, 2008:1980-1982.  

    34. [34]

      Li F B, Zhu Y F, Zhang X F. Synthesis of Oxazolidinofullerenes/Thiazolidinofullerenes:Novel Reaction of[60] Fullerene with Isocyanates/Isothiocyanates Promoted by Ferric Perchlorate[J]. RSC Adv, 2014,4(89):48085-48094. doi: 10.1039/C4RA10199E

    35. [35]

      Wang G W, Li J X, Li Y J. Novel Reactions of[60] Fullerene with Amino Acid Esters and Carbon Disulfide[J]. J Org Chem, 2006,71(2):680-684. doi: 10.1021/jo052116p

    36. [36]

      Li J X, Wang G W. Synthesis of[60] Fullerene-Fused Thiolactams and Thiaimidates[J]. Tetrahedron Lett, 2012,53(13):1610-1612. doi: 10.1016/j.tetlet.2012.01.075

    37. [37]

      Wu S L, Gao X. Copper-Catalyzed Aerobic Oxidative Reaction of C60 with Aliphatic Primary Amines and CS2[J]. J Org Chem, 2018,83(4):2125-2130.  

    38. [38]

      Isobe H, Tanaka T, Nakanishi W. Regioselective Oxygenative Tetraamination of[60] Fullerene. Fullerene-Mediated Reduction of Molecular Oxygen by Amine via Ground State Single Electron Transfer in Dimethyl Sulfoxide[J]. J Org Chem, 2005,70(12):4826-4832. doi: 10.1021/jo050432y

    39. [39]

      Futagoishi T, Murata M, Wakamiya A. Expansion of Orifices of Open C60 Derivatives and Formation of an Open C59S Derivative by Reaction with Sulfur[J]. Org Lett, 2013,15(11):2750-2753. doi: 10.1021/ol401083c

    40. [40]

      Zhang R, Futagoishi T, Murata M. Synthesis and Structure of an Open-Cage Thiafullerene C69S:Reactivity Differences of an Open-Cage C70 Tetraketone Relative to Its C60 Analogue[J]. J Am Chem Soc, 2014,136(23):8193-8196. doi: 10.1021/ja504054s

    41. [41]

      Khakina E A, Yurkova A A, PeregudovA S. Highly Selective Reactions of C60Cl6 with Thiols for the Synthesis of Functionalized[60] Fullerene Derivatives[J]. Chem Commun, 2012,48(57):7158-7160. doi: 10.1039/c2cc32517a

    42. [42]

      Khakina E A, Peregudov A S, Yurkova A A. Unusual Multistep Reaction of C70Cl10 with Thiols Producing C70[SR]5H[J]. Tetrahedron Lett, 2016,57(11):1215-1219. doi: 10.1016/j.tetlet.2016.01.066

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    17. [17]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(17)
  • Abstract views(1213)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return