Citation: XIE Yaqiao, ZHAO Jiaxin, LI Jielan, XU Zidi, QU Jiangying, TIAN Yunqi, GAO Feng. Synthesis of Sodium Chloride Induced Lignin-Based Porous Carbon and Their Supercapacitor Performances[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 482-488. doi: 10.11944/j.issn.1000-0518.2019.04.180294 shu

Synthesis of Sodium Chloride Induced Lignin-Based Porous Carbon and Their Supercapacitor Performances

  • Corresponding author: GAO Feng, fenggao2003@163.com
  • Received Date: 6 July 2018
    Revised Date: 22 October 2018
    Accepted Date: 29 November 2018

    Fund Project: the National Natural Science Foundation of China U1610114Supported by the National Natural Science Foundation of China(No.U1610114), Natural Science Fund of Liaoning Province(No.201602458), Doctoral Scientific Research Foundation of Liaoning Province(No.201601240)Natural Science Fund of Liaoning Province 201602458Doctoral Scientific Research Foundation of Liaoning Province 201601240

Figures(4)

  • A novel class of lignin-based porous carbon(PC) for supercapacitor electrode was successfully fabricated using lignin as the carbon precursor and NaCl as the template by reflux at low temperature and calcination at high temperature. The results indicate that the porous structures of the obtained samples can be regulated by varying the calcination temperature, where the surface area and pore volume of samples firstly increases then decreases with the increase of the temperature. As a result, the specific surface area of the obtained sample can be tailored in the range of 548~600 m2/g. PC calcinated at 700℃ has the largest surface area and exhibits the highest specific capacitance of 252 F/g and an effective areal capacitance of 31.2 μF/cm2 in 6 mol/L KOH solution. NaCl template can be cycled by washing from the products. This paper proposes a green method for synthesis of high value-added porous carbon from waste materials.
  • 加载中
    1. [1]

      Shi H. Activated Carbons and Double Layer Capacitance[J]. Electrochim Acta, 1996,41(10):1633-1639. doi: 10.1016/0013-4686(95)00416-5

    2. [2]

      Pandolfo A G, Hollenkamp A F. Carbon Properties and Their Role in Supercapacitors[J]. J Power Sources, 2006,157(1):11-27.  

    3. [3]

      Zhang L L, Zhao X S. Carbon-Based Materials as Supercapacitor Electrodes[J]. Chem Soc Rev, 2009,38(9):2520-2531. doi: 10.1039/b813846j

    4. [4]

      Gao F, Qu J Y, Geng C. Self-templating Synthesis of Nitrogen-Decorated Hierarchical Porous Carbon from Shrimp Shell for Supercapacitors[J]. J Mater Chem A, 2016,4(19):7445-7452. doi: 10.1039/C6TA01314G

    5. [5]

      Gao F, Shao G H, Qu J Y. Tailoring of Porous and Nitrogen-Rich Carbons Derived from Hydrochar for High-Performance Supercapacitor Electrodes[J]. Electrochim Acta, 2015,155:201-208. doi: 10.1016/j.electacta.2014.12.069

    6. [6]

      Montané D, Torné-Fernández V, Fierro V. Activated Carbons from Lignin:Kinetic Modeling of the Pyrolysis of Kraft Lignin Activated with Phosphoric Acid[J]. Chem Eng J, 2005,106(1):1-12.  

    7. [7]

      YAN Tao, LI Yunyan, SONG Guangsen. Study on Preparation of Lignin Activated Carbon with Zinc Chloride[J]. J Anhui Agric Sci, 2008,36(28):12094-12096. doi: 10.3969/j.issn.0517-6611.2008.28.012

    8. [8]

      Guo Y, Qi J, Jiang Y. Performance of Electrical Double Layer Capacitors with Porous Carbons Derived from Rice Husk[J]. Mater Chem Phys, 2003,80(3):704-709.  

    9. [9]

      Wu F C, Tseng R L, Hu C C. Effects of Pore Structure and Electrolyte on the Capacitive Characteristics of Steam-and KOH-Activated Carbons for Supercapacitors[J]. J Power Sources, 2005,144(1):302-309. doi: 10.1016/j.jpowsour.2004.12.020

    10. [10]

      Zhang S, Tian K, Cheng B H. Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes[J]. ACS Sustain Chem Eng, 2017,5(8):6682-6691. doi: 10.1021/acssuschemeng.7b00920

    11. [11]

      Song S, Ma F, Wu G. Facile Self-Templating Large Scale Preparation of Biomass-Derived 3D Hierarchical Porous Carbon for Advanced Supercapacitors[J]. J Mater Chem A, 2015,3(35):18154-18162. doi: 10.1039/C5TA04721H

    12. [12]

      Cheng P, Gao S, Zang P. Hierarchically Porous Carbon by Activation of Shiitake Mushroom for Capacitive Energy Storage[J]. Carbon, 2015,93:315-324. doi: 10.1016/j.carbon.2015.05.056

    13. [13]

      ZHANG Benbin, LIU Yunquan, YE Yueyuan. Progress in Preparation of Activated Carbon and Its Activation Mechanism[J]. Mod Chem Ind, 2014,34(3):34-39.  

    14. [14]

      Lee D, Jung J Y, Jung M J. Hierarchical Porous Carbon Fibers Prepared Using a SiO2, Template for High-Performance EDLCs[J]. Chem Eng J, 2015,263:62-70. doi: 10.1016/j.cej.2014.10.070

    15. [15]

      LI Penghui, MA Xiaohua. Hierarchical Porous Carbon Applied in Electric Double Layer Capacitor[J]. Battery BM, 2013,43(5):247-249. doi: 10.3969/j.issn.1001-1579.2013.05.001

    16. [16]

      White R J, Antonietti M, Titirici M M. Naturally Inspired Nitrogen Doped Porous Carbon[J]. J Mater Chem, 2009,19(45):8645-8650. doi: 10.1039/b911528e

    17. [17]

      Fechler N, Fellinger T P, Antonietti M. "Salt Templating":A Simple and Sustainable Pathway Toward Highly Porous Functional Carbons from Ionic Liquids[J]. Adv Mater, 2013,25(1):75-79. doi: 10.1002/adma.201203422

    18. [18]

      WEN Jialong, CHEN Tianying, SUN Runcang. Research Progress on Separation and Structural Analysis of Lignin in Lignocellulosic Biomass[J]. J Forest Eng, 2017,2(5):76-84.  

    19. [19]

      HE Yanfeng, LI Xiujin, FANG Wenjie. Studies on NaOH Soild-State Pretreatment on the Cellulosic Structural Changes of Rice Straw[J]. Renew Energy Resour, 2007,25(5):31-34. doi: 10.3969/j.issn.1671-5292.2007.05.009

    20. [20]

      REN Junli, SUN Runcang, LIU Chuanfu. Advances in Chemical Modification of Hemicelluloses[J]. Mod Chem Ind, 2006,26(s1):68-71.  

    21. [21]

      QU Yinbo. Industrialization of Cellulosic Ethanol[J]. Prog Chem, 2007,19(7):1098-1108.  

    22. [22]

      LU Yao, WEI Xianyong, ZONG Zhimin. Structural Investigation and Application of Lignins[J]. Prog Chem, 2013,25(5):838-858.  

    23. [23]

      Vanholme R, Demedts B, Morreel K. Lignin Biosynthesis and Structure[J]. Plant Physiol, 2010,153(3):895-905. doi: 10.1104/pp.110.155119

    24. [24]

      Faulon J L, Hatcher P G. Is There Any Order in the Structure of Lignin[J]. Energy Fuels, 1994,8(2):402-407. doi: 10.1021/ef00044a018

    25. [25]

      Hayashi J, Kazehaya A, Muroyama K. Preparation of Activated Carbon from Lignin by Chemical Activation[J]. Carbon, 2000,38(13):1873-1878. doi: 10.1016/S0008-6223(00)00027-0

    26. [26]

      Gong Y, Li D, Luo C. Highly Porous Graphitic Biomass Carbon as Advanced Electrode Materials for Supercapacitors[J]. Green Chem, 2017,19(17):4132-4140. doi: 10.1039/C7GC01681F

    27. [27]

      Guan T, Li K, Zhao J. Template-Free Preparation of Layer-Stacked Hierarchical Porous Carbons from Coal Tar Pitch for High Performance All-Solid-State Supercapacitors[J]. J Mater Chem A, 2017,5(30):15869-15878. doi: 10.1039/C7TA02966G

    28. [28]

      Liang T, Chen C, Li X. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture[J]. Langmuir, 2016,32(32):8042-8049. doi: 10.1021/acs.langmuir.6b01953

    29. [29]

      YU Jing, GAO Lizhen, LI Xuelian. Porous Carbons Produced by the Pyrolysis of Green Onion Leaves and Their Capacitive Behavior[J]. New Carbon Mater, 2016,31(5):475-484.  

    30. [30]

      HU Xiaozhou, WANG Jing, TANG Jing. Synthesis of Mixture Salt Activated Porous Carbon from Scaphium Scaphigerum and Its Performance as Supercapacitor Electrode Material[J]. Chinese J Appl Chem, 2015,32(5):591-596.  

    31. [31]

      MA Shiyao, DU Hui, GENG Chuang. In situ Synthesis of Nitrogen/Oxygen Co-Doped Porous Carbons Derived from Crab Shells and Their Application as Supercapacitor Electrode Materials[J]. Chinese J Appl Chem, 2016,33(11):1316-1321. doi: 10.11944/j.issn.1000-0518.2016.11.160047 

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    10. [10]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(28)
  • Abstract views(1488)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return