Citation: LU Jinpeng, XIA Chao, ZHOU Wei, LI Yaping, HU Xiaolei, LIAO Fei, YANG Xiaolan. Preparation and Application of a Bivalent Affinity Labeling Reagent of Fusion Tag Glutathione S-Transferase[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 402-413. doi: 10.11944/j.issn.1000-0518.2019.04.180269 shu

Preparation and Application of a Bivalent Affinity Labeling Reagent of Fusion Tag Glutathione S-Transferase

  • Corresponding author: YANG Xiaolan, xiaolanyang666@yeah.net
  • Received Date: 17 August 2018
    Revised Date: 22 November 2018
    Accepted Date: 5 December 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.31570862, No.81773625)National Natural Science Foundation of China 81773625National Natural Science Foundation of China 31570862

Figures(10)

  • To develop a platform for the site-selective immobilization of proteins and the screening of mixture-based ligand libraries through magnetic separation of complexes of ligands and targets, a bivalent affinity labeling reagent(Br-Ⅱ) against fusion tag glutathione S-transferase(GST) was designed and characterized. The use of two flexible benzenes as the moiety to occupy the hydrophobic site in one active site of GST, bromoacetyl as the group for covalent modification of sulfhydryl group nearby and carboxyl as the linking group yielded a monovalent affinity labeling reagent; the linkage of the monovalent affinity labeling reagent to the primary amines on diethylenetriamine gave Br-Ⅱ as the bivalent affinity labeling reagent that contained a secondary amino group for further conjugation with carboxyl group on magnetic beads. The kinetics and ratios for irreversible and reversible labeling of GST tag, before and after conjugation with reduced glutathione(GSH), respectively, was characterized for the designed bivalent affinity labeling reagent. Using alkaline phosphatase as the unwanted protein and the fluorescent ligand 8-anilino-1-naphthalenesulfonic acid as the small molecule model, the immobilization specificity for GST tag, and also the nonspecific adsorption for hydrophobic small molecules of the resultant GST-immobilized magnetic beads were checked. The designed compound showed half inhibitory concentration of (22±0.2) μmol/L, and its GSH adduct gave half inhibitory concentration of (0.41±0.06) μmol/L; the reversible and irreversible labeling of GST tag dimer showed both binding ratios close to 1:1; the Br-Ⅱ-functionalized magnetic beads showed selective immobilization of GST tag in the presence of alkaline phosphatase, and the immobilization capacity of about 25 mg/g for GST via either reversible or irreversible immobilization. After the immobilization of GST and further treatment with the GSH adduct of the monovalent affinity labeling reagent, magnetic beads showed no significant nonspecific binding of 8-anilino-1-naphthalenesulfonic acid. Therefore, magnetic beads after being functionalized with the titled compound are suitable for the immobilization of GST-fused proteins.
  • 加载中
    1. [1]

      Pascal J, Dirk W, Hendrik S. Chemical Strategies for Generating Protein Biochips[J]. Angew Chem Int Ed Engl, 2008,47(50):9618-9647. doi: 10.1002/anie.v47:50

    2. [2]

      Kingsmore S F. Multiplexed Protein Measurement:Technologies and Applications of Protein and Antibody Arrays[J]. Nat Rev Drug Discov, 2006,5(4):310-320. doi: 10.1038/nrd2006

    3. [3]

      Kall N, Cruz F P D, Boutureira O. Site-Selective Protein-Modification Chemistry for Basic Biology and Drug Development[J]. Nat Chem, 2016,8(2):103-113. doi: 10.1038/nchem.2393

    4. [4]

      Yu C C, Kuo Y Y, Liang C F. Site-specific Immobilization of Enzymes on Magnetic Nanoparticles and Their Use in Organic Synthesis[J]. Bioconjugate Chem, 2012,23(4):714-724. doi: 10.1021/bc200396r

    5. [5]

      Luk Y Y, Tingey M L, Dickson K A. Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals[J]. J Am Chem Soc, 2004,126(29):9024-9032. doi: 10.1021/ja0398565

    6. [6]

      Macbeath G, Schreiber S L. Printing Proteins as Microarrays for High-Throughput Function Determination[J]. Science, 2000,289(5485):1760-1763.  

    7. [7]

      Kindermann M, George N, Johnsson N. Covalent and Selective Immobilization of Fusion Proteins[J]. J Am Chem Soc, 2003,125(26):7810-7811. doi: 10.1021/ja034145s

    8. [8]

      Lin E W, Boehnke N, Maynard H D. Protein Polymer Conjugation via Ligand Affinity and Photoactivation of Glutathione S-Transferase[J]. Bioconjugate Chem, 2014,25(25):1902-1909.  

    9. [9]

      Viswanathan R, Labadie G R, Poulter C D. Regioselective Covalent Immobilization of Catalytically Active Glutathione S-Transferase on Glass Slides[J]. Bioconjugate Chem, 2013,24(4):571-577. doi: 10.1021/bc300462j

    10. [10]

      Rusmini F, Zhong Z, Feijen J. Protein Immobilization Strategies for Protein Biochips[J]. Biomacromolecule, 2007,8(6):1775-1789. doi: 10.1021/bm061197b

    11. [11]

      Berrade L, Garcia A E, Camarero J A. Protein Microarrays:Novel Developments and Applications[J]. Pharm Res, 2011,28(7):1480-1499. doi: 10.1007/s11095-010-0325-1

    12. [12]

      Boutureira O, Bernardes G J. Advances in Chemical Protein Modification[J]. Chem Rev, 2015,115(5):2174-2195. doi: 10.1021/cr500399p

    13. [13]

      Bernardim B, Cal P M, Matos M J. Stoichiometric and Irreversible Cysteine-selective Protein Modification Using Carbonylacrylic Reagents[J]. Nat Commun, 2016,713128. doi: 10.1038/ncomms13128

    14. [14]

      LIAO Fei, YANG Xiaolan, XIE Yanling, et al. Determination of Ligand Affinity in Mixtures Using Magnetic Separation and Chromatographic Analysis: CN, 101620205 B[P]. 2012-09-05(in Chinese).

    15. [15]

      Yang X, Pu J, Zhao H. Method to Screen Aromatic Ligands in Mixtures for Quantitative Affinities to Target Using Magnetic Separation of Bound Ligands Along with HPLC and UV Photometry Detection[J]. Microchim Acta, 2012,176(1/2):243-249.  

    16. [16]

      Yang X, Xie Y, Pu J. Estimation of Affinities of Ligands in Mixtures via Magnetic Recovery of Target-Ligand Complexes and Chromatographic Analyses:Chemometrics and an Experimental Model[J]. BMC Biotechnol, 2011,11(1)44. doi: 10.1186/1472-6750-11-44

    17. [17]

      Voelker A E, Viswanathan R. Synthesis of a Suite of Bioorthogonal Glutathione S-Transferase Substrates and Their Enzymatic Incorporation for Protein Immobilization[J]. J Org Chem, 2013,78(19):9647-9658. doi: 10.1021/jo401278x

    18. [18]

      Zhou Y, Guo T, Tang G. Site-Selective Protein Immobilization by Covalent Modification of GST Fusion Proteins[J]. Bioconjugate Chem, 2014,25(11):1911-1915. doi: 10.1021/bc500347b

    19. [19]

      Xu B, Tan D, Yang X. Fluorometric Titration Assay of Affinity of Tight-Binding Nonfluorescent Inhibitor of Glutathione S-Transferase[J]. J Fluoresc, 2015,25(1):1-8. doi: 10.1007/s10895-014-1475-z

    20. [20]

      YANG Xianfeng, ZHANG Ling, YANG Xiaolan. Design and Screening of High-affinity Ligands for Glutathione S-Transferaseas Fusion Tag[J]. J Chongqing Med Univ, 2012,37(9):791-795. doi: 10.3969/j.issn.0253-3626.2012.09.011

    21. [21]

      Bradford M M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding[J]. Anal Biochem, 1976,72(s1/2):248-254.  

    22. [22]

      Habig W H, Pabst M J, Jakoby W B. Glutathione S-Transferases the First Enzymatic Step in Mercapturic Acid Formation[J]. J Biol Chem, 1974,249(22):7130-7139.  

    23. [23]

      Li Y, Long G, Yang X. Approximated Maximum Adsorption of His-Tagged Enzyme/Mutants on Ni2+-NTA for Comparison of Specific Activities[J]. Int J Biol Macromol, 2015,74:211-217. doi: 10.1016/j.ijbiomac.2014.12.009

    24. [24]

      Kinsley N, Sayed Y, Mosebi S. Characterization of the Binding of 8-Anilinonaphthalene Sulfonate to Rat Class Mu GST M1-1[J]. Biophys Chem, 2008,137(3):100-104.  

  • 加载中
    1. [1]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    4. [4]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    7. [7]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    8. [8]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    20. [20]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

Metrics
  • PDF Downloads(1)
  • Abstract views(1315)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return