Citation: HAO Wenwen, ZHAO Dan, LI Yanchun, CHU Wenling, LÜ Chengwei, SHI Lei. One-Pot Efficient Synthesis of 3-Methylindole from Biomass-Derived Glycerol with Aniline by Highly Dispersible Nanosilver Catalyst[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 465-473. doi: 10.11944/j.issn.1000-0518.2019.04.180265 shu

One-Pot Efficient Synthesis of 3-Methylindole from Biomass-Derived Glycerol with Aniline by Highly Dispersible Nanosilver Catalyst

  • Corresponding author: SHI Lei, shilei515dl@126.com
  • Received Date: 15 August 2018
    Revised Date: 11 September 2018
    Accepted Date: 23 October 2018

    Fund Project: the National Natural Science Foundation of China 21604031Supported by the National Natural Science Foundation of China(No.21576128, No.21604031, No.21403100)the National Natural Science Foundation of China 21576128the National Natural Science Foundation of China 21403100

Figures(9)

  • A highly dispersible nanosilver catalyst of ZnO modified Ag/SiO2 was successfully applied to the one-pot efficient synthesis of 3-methylindole from aniline and biomass-derived glycerol for the first time. The catalyst exhibited an excellent catalytic performance. The investigations of Ag-based catalysts via X-ray diffraction(XRD), transmission electron microscopy(TEM), temperature programmed reduction of H2(H2-TPR), temperature programmed desorption(TPD) of NH3 or CO2, thermogravimetric(TG) analysis and inductively coupled plasma(ICP) emission spectroscopy indicate that ZnO can enhance the interaction between silver and the support and make Ag particles be firmly anchored on the support of SiO2-ZnO. As a result, not only the dispersion of silver is increased obviously, but also the aggregation or sintering of silver nanoparticles is inhibited effectively. In addition, ZnO can also increase the acid and base sites of the Ag-based catalyst significantly, which is very beneficial to the hydrogenolysis of glycerol to 1, 2-propanediol and promoted the synthesis of 3-methylindole greatly. The yield of 3-methylindole is up to 64% at the reaction time of 16 h and is only decreased by 4% after Ag/SiO2-ZnO is reused four times. Furthermore, the synthesis mechanism of 3-methylindole from glycerol and aniline over Ag/SiO2-ZnO catalyst was proposed, in which 1, 2-propanediol is the intermediate to produce 3-methylindole.
  • 加载中
    1. [1]

      Zhang M Z, Chen Q, Yang G F. A Review on Recent Developments of Indole-Containing Antiviral Agents[J]. Eur J Med Chem, 2015,89:421-441. doi: 10.1016/j.ejmech.2014.10.065

    2. [2]

      Cho I, Jeon N J, Kwon O K. Indolo[3, 2-B] Indole-Based Crystalline Hole-Transporting Material for Highly Efficient Perovskite Solar Cells[J]. Chem Sci, 2017,8(1):734-741.  

    3. [3]

      Liu D Y, Huo X M, Liu J. The Role of La2O3 and CeO2 Promoters in the Ag/SiO2-ZnO Catalyst for the Vapor Phase Synthesis of Indole[J]. React Kinet Mech Catal, 2010,99(2):335-343.  

    4. [4]

      Siwach P, Singh S, Gupta R K. Vapor Phase Alkylation of Indole with Methanol and Dimethylcarbonate over Ni-Mn Based Ferrospinels[J]. Catal Commun, 2009,10(12):1577-1581. doi: 10.1016/j.catcom.2009.04.019

    5. [5]

      Zhou Z, Li Y, Gong L. Enantioselective 2-Alkylation of 3-Substituted Indoles with Dual Chiral Lewis Acid/Hydrogen-Bond-Mediated Catalyst[J]. Org Lett, 2017,19(1):222-225. doi: 10.1021/acs.orglett.6b03500

    6. [6]

      Deslandes B, Gariépy C, Houde A. Review of Microbiological and Biochemical Effects of Skatole on Animal Production[J]. Livest Prod Sci, 2001,71(2/3):193-200.  

    7. [7]

      Hughes D T, Pelletier J, Luetje C W. Odorant Receptor from the Southern House Mosquito Narrowly Tuned to the Oviposition Attractant Skatole[J]. J Chem Ecol, 2010,36(8):797-800. doi: 10.1007/s10886-010-9828-9

    8. [8]

      Simoneau C A, Strohl A M, Ganem B. One-Pot Synthesis of Polysubstituted Indoles from Aliphatic Nitro Compounds under Mild Conditions[J]. Tetrahedron Lett, 2007,48(10):1809-1811. doi: 10.1016/j.tetlet.2007.01.031

    9. [9]

      Robinson B. The Fischer Indole Synthesis[J]. Chem Rev, 1963,63(4):373-401. doi: 10.1021/cr60224a003

    10. [10]

      Magnus P, Mitchell I S. Synthesis of 3-Methylindoles from N-Aryl-N-(3-Triisopropyl Silylpropargyl) Sulfonamides[J]. Tetrahedron Lett, 1998,39(26):4595-4598. doi: 10.1016/S0040-4039(98)00847-8

    11. [11]

      Yu J, Xu J, Yu Z. A Continuous-Flow Fischer Indole Synthesis of 3-Methylindole in an Ionic Liquid[J]. J Flow Chem, 2017,7(2):33-36. doi: 10.1556/1846.2017.00004

    12. [12]

      Ritter S K. Biomass or Bust[J]. Chem Eng News, 2004,82(22):31-32. doi: 10.1021/cen-v082n022.p031

    13. [13]

      Sabri Faezeh, Idem R, Ibrahim H. Metal Oxide-Based Catalysts for the Autothermal Reforming of Glycerol[J]. Ind Eng Chem Res, 2018,57(7):2486-2497. doi: 10.1021/acs.iecr.7b04582

    14. [14]

      ZHAO Jing, YU Weiqiang, LI Decai. Catalytic Dehydration-Hydrogenation of Glycerol to 1, 2-Propylene Glycol at Ambient Hydrogen Pressure[J]. Chinese J Catal, 2010,31(2):74-78.  

    15. [15]

      Sun W, Liu D Y, Zhu H Y. A New Efficient Approach to 3-Methylindole:Vapor-Phase Synthesis from Aniline and Glycerol over Cu-Based Catalyst[J]. Catal Commun, 2010,12(2):147-150.  

    16. [16]

      Cui Y X, Zhou X S, Sun Q. Vapor-Phase Synthesis of 3-Methylindole from Glycerol and Aniline over Zeolites-Supported Cu-Based Catalysts[J]. J Mol Catal A:Chem, 2013,378:238-245. doi: 10.1016/j.molcata.2013.06.015

    17. [17]

      BAO Zhuoran, CUI Yanxi, SUN Peng. Vapor-Phase Synthesis of 3-Methylindole from Glycerol and Aniline over Cu/SiO2-Al2O3 Catalyst Modified by Co or Ni[J]. Acta Phys-Chim Sin, 2013,29(11):2444-2450. doi: 10.3866/PKU.WHXB201309091

    18. [18]

      BAO Zhuoran, HUO Xiaomin, SUN Lidong. Efficient Vapor-Phase Synthesis of 3-Methylindole over Fe Promoted Cu/SiO2-Al2O3 Catalyst[J]. Chinese J Appl Chem, 2013,30(10):1156-1162.  

    19. [19]

      Wen C, Yin A, Dai W L. Recent Advances in Silver-Based Heterogeneous Catalysts for Green Chemistry Processes[J]. Appl Catal B:Environ, 2014,160/161:730-741. doi: 10.1016/j.apcatb.2014.06.016

    20. [20]

      AbdelDayem H M, Al-Shihry S S, Hassan S A. Selective Methanol Oxidation to Hydrogen over Ag/ZnO Catalysts Doped with Mono-and Bi-Rare Earth Oxides[J]. Ind Eng Chem Res, 2014,53(51):19884-19894. doi: 10.1021/ie502609z

    21. [21]

      Liu S, Wu X, Liu W. Soot Oxidation over CeO2 and Ag/CeO2:Factors Determining the Catalyst Activity and Stability During Reaction[J]. J Catal, 2016,337:188-198. doi: 10.1016/j.jcat.2016.01.019

    22. [22]

      LV Wenhui, LIU Xinghui, LIU Dongyan. Vapor-Phase Synthesis of 3-Methylindole over Fe-, Co-, or Ni-Promoted Ag/SiO2 Catalysts[J]. Chinese J Catal, 2009,30(12):1287-1290. doi: 10.3321/j.issn:0253-9837.2009.12.018

    23. [23]

      Liu J, Li X, Zhao Q. Mechanistic Investigation of the Enhanced NH3-SCR on Cobalt-Decorated Ce-Ti Mixed Oxide:In Situ FTIR Analysis for Structure-Activity Correlation[J]. Appl Catal B:Environ, 2017,200:297-308. doi: 10.1016/j.apcatb.2016.07.020

    24. [24]

      Kusunoki Y, Miyazawa T, Kunimori K. Highly Active Metal Acid Bifunctional Catalyst System for Hydrogenolysis of Glycerol under Mild Reaction Conditions[J]. Catal Commun, 2005,6(10):645-649. doi: 10.1016/j.catcom.2005.06.006

    25. [25]

      Feng J, Wang J, Zhou Y. Effect of Base Additives on the Selective Hydrogenolysis of Glycerol over Ru/TiO2 Catalyst[J]. Chem Lett, 2007,36(10):1274-1275. doi: 10.1246/cl.2007.1274

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(3)
  • Abstract views(1147)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return