Citation: WANG He, LUO Jing, LI Xiaojie, SHI Dongjian, CHEN Mingqing. Efficient Preparation of Polydopamine Nanoparticles by Precipitation[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 155-160. doi: 10.11944/j.issn.1000-0518.2019.02.180150 shu

Efficient Preparation of Polydopamine Nanoparticles by Precipitation

  • Corresponding author: LI Xiaojie, xjli@jiangnan.edu.cn
  • Received Date: 3 May 2018
    Revised Date: 16 May 2018
    Accepted Date: 2 July 2018

    Fund Project: the Open Research Fund of Key Laboratory of Synthetic and Biological Colloids(Jiangnan University), Ministry of Education JDSJ2016-06the Fundamental Research Funds for the Central Universities JUSRP115A07the Jiangsu Planned Projects for Postdoctoral Research Funds 1601237CSupported by the Fundamental Research Funds for the Central Universities(No.JUSRP115A07), the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1601237C), the Open Research Fund of Key Laboratory of Synthetic and Biological Colloids(Jiangnan University), Ministry of Education(No.JDSJ2016-06)

Figures(7)

  • In order to obtain dispersive and stable polydopamine nanoparticles, an aqueous dispersion of polydopamine nanoparticles was efficiently prepared using the "precipitation-redispersion" method. First, polydopamine nanoparticles dispersed in water/ethanol were prepared by a solution oxidation method, and then acetone was added to the dispersion to flocculate the polydopamine nanoparticles. The precipitate was collected, rinsed with acetone and dried, and then redispersed in water to obtain a purified aqueous dispersion of polydopamine nanoparticles. The polydopamine nanoparticles obtained by the acetone precipitation method are regular in shape with good dispersibility. The particle size distribution is about 250 nm, and has good storage stability and photothermal properties in water. Compared with conventional ultracentrifugation purification method, the yield increases by 57.4%. This method is essential for further applications in drug delivery and photothermal therapy/>
  • 加载中
    1. [1]

      Sedó J, Saiz-Poseu J, Busqué F. Catechol-based Biomimetic Functional Materials[J]. Adv Mater, 2013,25(5):653-701. doi: 10.1002/adma.201202343

    2. [2]

      Burzio L A, Waite J H. Cross-linking in Adhesive Quinoproteins:Studies with Model Decapeptides[J]. Biochemistry, 2000,39(36):11147-11153. doi: 10.1021/bi0002434

    3. [3]

      van der Leeden M C. Are Conformational Changes, Induced by Osmotic Pressure Variations, the Underlying Mechanism of Controlling the Adhesive Activity of Mussel Adhesive Proteins?[J]. Langmuir, 2005,21(24):11373-11379. doi: 10.1021/la0515468

    4. [4]

      Yang J, Cohen Stuart M A, Kamperman M. Jack of All Trades:Versatile Catechol Crosslinking Mechanisms[J]. Chem Soc Rev, 2014,43(24):8271-8298. doi: 10.1039/C4CS00185K

    5. [5]

      Lu Q, Danner E, Waite J H. Adhesion of Mussel Foot Proteins to Different Substrate Surfaces[J]. J R Soc Interface, 2013,10(79):20120759-20120759.  

    6. [6]

      Zhang C, Gong L, Xiang L. Deposition and Adhesion of Polydopamine on Surfaces of Varying Wettability[J]. ACS Appl Mater Interfaces, 2017,9(36):30943-30950. doi: 10.1021/acsami.7b09774

    7. [7]

      Zhao P C, Wei K C, Feng Q. Mussel-Mimetic Hydrogels with Defined Cross-linkers Achieved via Controlled Catechol Dimerization Exhibiting Tough Adhesion for Wet Biological Tissues[J]. Chem Commun, 2017,53(88):12000-12003. doi: 10.1039/C7CC07215E

    8. [8]

      Hofman A H, Van I H, Yang J. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox[J]. Adv Mater, 2018,30(19):1704640-1704678. doi: 10.1002/adma.v30.19

    9. [9]

      Liebscher J, Mrówczyński R, Scheidt H A. Structure of Polydopamine:A Never-Ending Story?[J]. Langmuir, 2013,29(33):10539-10548. doi: 10.1021/la4020288

    10. [10]

      Batul R, Tamanna T, Khaliq A. Recent Progress in the Biomedical Applications of Polydopamine Nanostructures[J]. Biomater Sci, 2017,5(7):1204-1229. doi: 10.1039/C7BM00187H

    11. [11]

      Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials:Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chem Rev, 2014,114(9):5057-5115. doi: 10.1021/cr400407a

    12. [12]

      Ryu J H, Messersmith P B, Lee H. Polydopamine Surface Chemistry:A Decade of Discovery[J]. ACS Appl Mater Interfaces, 2018,10(9):7523-7540. doi: 10.1021/acsami.7b19865

    13. [13]

      Schlaich C, Wei Q, Haag R. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability:From Superhydrophilic Towards Superhydrophobic Surface Coatings[J]. Langmuir, 2017,33(38):9508-9520. doi: 10.1021/acs.langmuir.7b01291

    14. [14]

      Orishchin N, Crane C C, Brownell M. Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness[J]. Langmuir, 2017,33(24):6046-6053. doi: 10.1021/acs.langmuir.7b00671

    15. [15]

      Kan B, Zhang Q, Li M. Solution-Processed Organic Solar Cells Based on Dialkylthiol-substituted Benzodithiophene Unit with Efficiency near 10%[J]. J Am Chem Soc, 2014,136(44):15529-15532. doi: 10.1021/ja509703k

    16. [16]

      Lynge M E, Philipp S, Brigitte S D. Recent Developments in Poly(dopamine)-Based Coatings for Biomedical Applications[J]. Nanomedicine, 2015,10(17):2725-2742. doi: 10.2217/nnm.15.89

    17. [17]

      Wang X, Wang C, Wang X. A Polydopamine Nanoparticle Knotted Poly(ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-photothermal Therapy[J]. Chem Mater, 2017,29(3):1370-1376. doi: 10.1021/acs.chemmater.6b05192

    18. [18]

      Mrówczyński R. Polydopamine-based Multifunctional(Nano)materials for Cancer Therapy[J]. ACS Appl Mater Interfaces, 2017,10(9):7541-7561.  

    19. [19]

      Lin X, Ma W, Wu H. Superhydrophobic Magnetic Poly(DOPAm-co-PFOEA)/Fe3O4/Cellulose Microspheres for Stable Liquid Marbles[J]. Chem Commun, 2016,52(9):1895-1898. doi: 10.1039/C5CC08842A

    20. [20]

      Zhang H, Zhao T, Newland B. Catechol Functionalized Hyperbranched Polymers as Biomedical Materials[J]. Prog Polym Sci, 2018,78(2):47-55.

    21. [21]

      Liu Y, Ai K, Liu J. Dopamine-Melanin Colloidal Nanospheres:An Efficient Near-infrared Photothermal Therapeutic Agent for in Vivo Cancer Therapy[J]. Adv Mater, 2013,25(9):1353-1359. doi: 10.1002/adma.v25.9

    22. [22]

      Liu S, Pan J, Liu J. Dynamically PEGylated and Borate-Coordination-Polymer-Coated Polydopamine Nanoparticles for Synergetic Tumor-Targeted, Chemo-photothermal Combination Therapy[J]. Small, 2018,14(13):1703968-1703980. doi: 10.1002/smll.v14.13

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    6. [6]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    7. [7]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    8. [8]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    9. [9]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    10. [10]

      Ling Li Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063

    11. [11]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    12. [12]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    17. [17]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    18. [18]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    19. [19]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(184)
  • Abstract views(9847)
  • HTML views(4842)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return