Citation: WANG He, LUO Jing, LI Xiaojie, SHI Dongjian, CHEN Mingqing. Efficient Preparation of Polydopamine Nanoparticles by Precipitation[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 155-160. doi: 10.11944/j.issn.1000-0518.2019.02.180150 shu

Efficient Preparation of Polydopamine Nanoparticles by Precipitation

  • Corresponding author: LI Xiaojie, xjli@jiangnan.edu.cn
  • Received Date: 3 May 2018
    Revised Date: 16 May 2018
    Accepted Date: 2 July 2018

    Fund Project: the Open Research Fund of Key Laboratory of Synthetic and Biological Colloids(Jiangnan University), Ministry of Education JDSJ2016-06the Fundamental Research Funds for the Central Universities JUSRP115A07the Jiangsu Planned Projects for Postdoctoral Research Funds 1601237CSupported by the Fundamental Research Funds for the Central Universities(No.JUSRP115A07), the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1601237C), the Open Research Fund of Key Laboratory of Synthetic and Biological Colloids(Jiangnan University), Ministry of Education(No.JDSJ2016-06)

Figures(7)

  • In order to obtain dispersive and stable polydopamine nanoparticles, an aqueous dispersion of polydopamine nanoparticles was efficiently prepared using the "precipitation-redispersion" method. First, polydopamine nanoparticles dispersed in water/ethanol were prepared by a solution oxidation method, and then acetone was added to the dispersion to flocculate the polydopamine nanoparticles. The precipitate was collected, rinsed with acetone and dried, and then redispersed in water to obtain a purified aqueous dispersion of polydopamine nanoparticles. The polydopamine nanoparticles obtained by the acetone precipitation method are regular in shape with good dispersibility. The particle size distribution is about 250 nm, and has good storage stability and photothermal properties in water. Compared with conventional ultracentrifugation purification method, the yield increases by 57.4%. This method is essential for further applications in drug delivery and photothermal therapy/>
  • 加载中
    1. [1]

      Sedó J, Saiz-Poseu J, Busqué F. Catechol-based Biomimetic Functional Materials[J]. Adv Mater, 2013,25(5):653-701. doi: 10.1002/adma.201202343

    2. [2]

      Burzio L A, Waite J H. Cross-linking in Adhesive Quinoproteins:Studies with Model Decapeptides[J]. Biochemistry, 2000,39(36):11147-11153. doi: 10.1021/bi0002434

    3. [3]

      van der Leeden M C. Are Conformational Changes, Induced by Osmotic Pressure Variations, the Underlying Mechanism of Controlling the Adhesive Activity of Mussel Adhesive Proteins?[J]. Langmuir, 2005,21(24):11373-11379. doi: 10.1021/la0515468

    4. [4]

      Yang J, Cohen Stuart M A, Kamperman M. Jack of All Trades:Versatile Catechol Crosslinking Mechanisms[J]. Chem Soc Rev, 2014,43(24):8271-8298. doi: 10.1039/C4CS00185K

    5. [5]

      Lu Q, Danner E, Waite J H. Adhesion of Mussel Foot Proteins to Different Substrate Surfaces[J]. J R Soc Interface, 2013,10(79):20120759-20120759.  

    6. [6]

      Zhang C, Gong L, Xiang L. Deposition and Adhesion of Polydopamine on Surfaces of Varying Wettability[J]. ACS Appl Mater Interfaces, 2017,9(36):30943-30950. doi: 10.1021/acsami.7b09774

    7. [7]

      Zhao P C, Wei K C, Feng Q. Mussel-Mimetic Hydrogels with Defined Cross-linkers Achieved via Controlled Catechol Dimerization Exhibiting Tough Adhesion for Wet Biological Tissues[J]. Chem Commun, 2017,53(88):12000-12003. doi: 10.1039/C7CC07215E

    8. [8]

      Hofman A H, Van I H, Yang J. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox[J]. Adv Mater, 2018,30(19):1704640-1704678. doi: 10.1002/adma.v30.19

    9. [9]

      Liebscher J, Mrówczyński R, Scheidt H A. Structure of Polydopamine:A Never-Ending Story?[J]. Langmuir, 2013,29(33):10539-10548. doi: 10.1021/la4020288

    10. [10]

      Batul R, Tamanna T, Khaliq A. Recent Progress in the Biomedical Applications of Polydopamine Nanostructures[J]. Biomater Sci, 2017,5(7):1204-1229. doi: 10.1039/C7BM00187H

    11. [11]

      Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials:Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chem Rev, 2014,114(9):5057-5115. doi: 10.1021/cr400407a

    12. [12]

      Ryu J H, Messersmith P B, Lee H. Polydopamine Surface Chemistry:A Decade of Discovery[J]. ACS Appl Mater Interfaces, 2018,10(9):7523-7540. doi: 10.1021/acsami.7b19865

    13. [13]

      Schlaich C, Wei Q, Haag R. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability:From Superhydrophilic Towards Superhydrophobic Surface Coatings[J]. Langmuir, 2017,33(38):9508-9520. doi: 10.1021/acs.langmuir.7b01291

    14. [14]

      Orishchin N, Crane C C, Brownell M. Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness[J]. Langmuir, 2017,33(24):6046-6053. doi: 10.1021/acs.langmuir.7b00671

    15. [15]

      Kan B, Zhang Q, Li M. Solution-Processed Organic Solar Cells Based on Dialkylthiol-substituted Benzodithiophene Unit with Efficiency near 10%[J]. J Am Chem Soc, 2014,136(44):15529-15532. doi: 10.1021/ja509703k

    16. [16]

      Lynge M E, Philipp S, Brigitte S D. Recent Developments in Poly(dopamine)-Based Coatings for Biomedical Applications[J]. Nanomedicine, 2015,10(17):2725-2742. doi: 10.2217/nnm.15.89

    17. [17]

      Wang X, Wang C, Wang X. A Polydopamine Nanoparticle Knotted Poly(ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-photothermal Therapy[J]. Chem Mater, 2017,29(3):1370-1376. doi: 10.1021/acs.chemmater.6b05192

    18. [18]

      Mrówczyński R. Polydopamine-based Multifunctional(Nano)materials for Cancer Therapy[J]. ACS Appl Mater Interfaces, 2017,10(9):7541-7561.  

    19. [19]

      Lin X, Ma W, Wu H. Superhydrophobic Magnetic Poly(DOPAm-co-PFOEA)/Fe3O4/Cellulose Microspheres for Stable Liquid Marbles[J]. Chem Commun, 2016,52(9):1895-1898. doi: 10.1039/C5CC08842A

    20. [20]

      Zhang H, Zhao T, Newland B. Catechol Functionalized Hyperbranched Polymers as Biomedical Materials[J]. Prog Polym Sci, 2018,78(2):47-55.

    21. [21]

      Liu Y, Ai K, Liu J. Dopamine-Melanin Colloidal Nanospheres:An Efficient Near-infrared Photothermal Therapeutic Agent for in Vivo Cancer Therapy[J]. Adv Mater, 2013,25(9):1353-1359. doi: 10.1002/adma.v25.9

    22. [22]

      Liu S, Pan J, Liu J. Dynamically PEGylated and Borate-Coordination-Polymer-Coated Polydopamine Nanoparticles for Synergetic Tumor-Targeted, Chemo-photothermal Combination Therapy[J]. Small, 2018,14(13):1703968-1703980. doi: 10.1002/smll.v14.13

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(159)
  • Abstract views(6542)
  • HTML views(3395)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return