Citation: GAO Shan, SUN Haijun, DU Mengmeng, GUO Fen, YE Xiaoli, QIAO Lei. Capacitive Performance Comparison of Carbon Fiber Cloth Supported Three-Dimensional Polyaniline Networks in RCl(R=H, Li, Na, K) Aqueous Solution[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 236-244. doi: 10.11944/j.issn.1000-0518.2019.02.180144 shu

Capacitive Performance Comparison of Carbon Fiber Cloth Supported Three-Dimensional Polyaniline Networks in RCl(R=H, Li, Na, K) Aqueous Solution

  • Corresponding author: DU Mengmeng, duchangmeng0704@126.com
  • Received Date: 2 May 2018
    Revised Date: 30 May 2018
    Accepted Date: 19 July 2018

    Fund Project: Youth Science and Technology Backbone Training Program of Wuhan University of Science and Technology 2017xz011the Natural Science Foundation of Hubei Province 2018CFB214Supported by the Natural Science Foundation of Hubei Province(No.2018CFB214), Youth Science and Technology Backbone Training Program of Wuhan University of Science and Technology(No.2017xz011)

Figures(6)

  • Carbon fiber cloth supported three-dimensional polyaniline networks were synthesized by electrochemical polymerization. Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectrometer were applied to characterize the morphology of the electrode and analyze the characteristic groups on the electrode surface. The capacitive performance of the as-prepared electrode in four RCl(R=H, Li, Na, K) aqueous solutions was systematically compared. The electrochemical tests show that KCl electrolyte gives a wider potential window(1.8 V) than the HCl or LiCl electrolyte, and also exhibits a superior specific capacitance(501 F/g@0.5 A/g) to the NaCl electrolyte. The energy density under the current density of 10 A/g in the KCl electrolyte is even larger than that in the HCl electrolyte under 2.0 A/g. As a result, KCl is the most suitable electrolyte for the polyaniline-based capacitor. The potential window is widened and the energy density of electrochemical capacitor is remarkably improved just simply by altering the electrolyte in the aqueous solution, which avoids the issues of poor physico-chemical stability and severe environment contamination originated from the organic solutions.
  • 加载中
    1. [1]

      Caldona E B, Al Christopher C, Pajarito B B. Novel Anti-Corrosion Coatings from Rubber-Modified Polybenzoxazine-Based Polyaniline Composites[J]. Appl Surf Sci, 2017,422:162-171. doi: 10.1016/j.apsusc.2017.05.083

    2. [2]

      Hong J, Han X, Shi H. Preparation of Conductive Silk Fibroin Yarns Coated with Polyaniline Using an Improved Method Based on in situ Polymerization[J]. Synth Met, 2018,235:89-96. doi: 10.1016/j.synthmet.2017.12.002

    3. [3]

      Eising M, Cava C E, Salvatierra R V. Doping Effect on Self-Assembled Films of Polyaniline and Carbon Nanotube Applied as Ammonia Gas Sensor[J]. Sens Actuators B:Chem, 2017,245:25-33. doi: 10.1016/j.snb.2017.01.132

    4. [4]

      Dimitriev O P. Doping of Polyaniline by Transition-Metal Salts[J]. Macromolecules, 2004,37(9):3388-3395. doi: 10.1021/ma035677w

    5. [5]

      Ryu K S, Kim K M, Kang S G. Electrochemical and Physical Characterization of Lithium Ionic Salt Doped Polyaniline as a Polymer Electrode of Lithium Secondary Battery[J]. Synth Met, 2000,110(3):213-217.  

    6. [6]

      ZHANG Aiqin, WANG Lizhen, ZHANG Yong. Electrochemical Properties of Activated Carbon-Polyaniline Hybrid Capacitor[J]. Chinese Battery Ind, 2010,15(1):18-21. doi: 10.3969/j.issn.1008-7923.2010.01.005

    7. [7]

      Gupta V, Miura N. Large-Area Network of Polyaniline Nanowires Prepared by Potentiostatic Deposition Process[J]. Electrochem Commun, 2005,7(10):995-999. doi: 10.1016/j.elecom.2005.07.008

    8. [8]

      MA Li, FENG Lijun, GAN Mengyu. Synthesis and Properties of Conducting Polyaniline Doped with Multiple Sulfonic Acid[J]. Chinese J Appl Chem, 2008,25(2):142-146. doi: 10.3969/j.issn.1000-0518.2008.02.004 

    9. [9]

      Guo F, Ye K, Huang X. Palladium Dispersed in Three-Dimensional Polyaniline Networks as the Catalyst for Hydrogen Peroxide Electro-Reduction in an Acidic Medium[J]. RSC Adv, 2015,5(114):94008-94015. doi: 10.1039/C5RA19478D

    10. [10]

      XU Hui, XU Yao, CHEN Yong. The Adsorption of Trace Cr(Ⅵ) in Aqueous Solution by Polyaniline/Attapulgite Nanofiber Composite[J]. Chinese J Appl Chem, 2011,28(5):549-554. doi: 10.3969/j.issn.1001-4160.2011.05.009 

    11. [11]

      Gao Z, Yang W, Wang J. Electrochemical Synthesis of Layer-by-Layer Reduced Graphene Oxide Sheets/Polyaniline Nanofibers Composite and Its Electrochemical Performance[J]. Electrochim Acta, 2013,91:185-194. doi: 10.1016/j.electacta.2012.12.119

    12. [12]

      WANG Hongzhi, GAO Cuixia, ZHANG Peng. Synthesis and Electrochemical Performance of Graphene/Polyaniline[J]. Acta Phys-Chim Sin, 2013,29(1):117-122. doi: 10.3866/PKU.WHXB201210234

    13. [13]

      Guo F, Li Y, Cao D. A Double-Chamber Energy Storage Device with Dual Ionic Electrolyte Enabling High Energy Density[J]. Electrochim Acta, 2018,274:31-39. doi: 10.1016/j.electacta.2018.04.085

    14. [14]

      Saprigin A, Brenneman K, Lee W. Li+ Doping-Induced Localization in Polyaniline[J]. J Synth Met, 1999,100(1):55-59.  

    15. [15]

      LU Xiangjun, DOU Hui, YANG Sudong. Fabrication and Electrochemical Capacitive Behavior of Freestanding Graphene/Polyaniline Nanofibre Film[J]. Acta Phys-Chim Sin, 2011,27(10):2333-2339. doi: 10.3866/PKU.WHXB20111022

    16. [16]

      Mi H, Zhang X, Ye X. Preparation and Enhanced Capacitance of Core-Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors[J]. J Power Sources, 2008,176(1):403-409.  

    17. [17]

      Prunǎ A, Branzoi V, Branzoi F. Ordered Arrays of Copper Nanowires Enveloped in Polyaniline Nanotubes[J]. J Appl Electrochem, 2011,41(1):77-81.  

    18. [18]

      Hong X, Zhang B, Murphy E. Three-Dimensional Reduced Graphene Oxide/Polyaniline Nanocomposite Film Prepared by Diffusion Driven Layer-by-Layer Assembly for High-Performance Supercapacitors[J]. J Power Sources, 2017,343:60-66. doi: 10.1016/j.jpowsour.2017.01.034

    19. [19]

      ZHANG Yue, WANG Guangjin, PAN Mu. Fast Electropolymerization of Polyaniline Nanofibers on Carbon Paper[J]. Chem J Chinese Univ, 2014,35(10):2234-2238. doi: 10.7503/cjcu20140524

    20. [20]

      REN Lijun, ZHANG Gaini, LEI Ji. Prepartion of Polyaniline Nanowire Electrode Material with High Rate Performance for Supercapacitor[J]. New Chem Mater, 2017,45(1):56-58.  

    21. [21]

      SHANG Xiuli, SUO Longning, FENG Wencheng. Preparation of Polyaniline/Polysulfone Composite Material and Their Super-capacitive Performance[J]. Chinese J Appl Chem, 2013,30(9):1060-1064.  

    22. [22]

      Zhang X, Ji L, Zhang S. Synthesis of a Novel Polyaniline-Intercalated Layered Manganese Oxide Nanocomposite as Electrode Material for Electrochemical Capacitor[J]. J Power Sources, 2007,173(2):1017-1023. doi: 10.1016/j.jpowsour.2007.08.083

    23. [23]

      Fan W, Zhang C, Tjiu W. Graphene-Wrapped Polyaniline Hollow Spheres as Novel Hybrid Electrode Materials for Supercapacitor Applications[J]. ACS Appl Mater Interfaces, 2017,5(8):3382-3391.  

    24. [24]

      Bandyopadhyay P, Kuila T, Balamurugan J. Facile Synthesis of Novel Sulfonated Polyaniline Functionalized Graphene Using m-Aminobenzene Sulfonic Acid for Asymmetric Supercapacitor Application[J]. Chem Eng J, 2017,308:1174-1184. doi: 10.1016/j.cej.2016.10.015

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    9. [9]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    15. [15]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(6)
  • Abstract views(1038)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return