Citation: YANG Zhi. Effect of Different Catalyst Loadings on the Catalytic Performance of SmMn2O5/γ-Al2O3 in NO Oxidation[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 195-202. doi: 10.11944/j.issn.1000-0518.2019.02.180109 shu

Effect of Different Catalyst Loadings on the Catalytic Performance of SmMn2O5/γ-Al2O3 in NO Oxidation

  • Corresponding author: YANG Zhi, 1120140096@mail.nankai.edu.cn
  • Received Date: 11 April 2018
    Revised Date: 16 May 2018
    Accepted Date: 21 May 2018

Figures(6)

  • Noble metal catalyst exhibits excellent effects on the catalytic oxidation of NOx, but the cost is high. The supported catalysts and non-noble metal catalysts have been widely explored. In this work, SmMn2O5(SMO) and SmMn2O5/γ-Al2O3 catalysts were prepared by hydrothermal method and impregnation method, respectively, and the effect of the content of SmMn2O5 on the catalytic oxidation of NO was investigated. Scanning electron microscopy(SEM), specific surface area(BET) and pore size distribution analysis, temperature programmed reduction(TPR) and temperature programmed desorption(TPD) were conducted towards different SmMn2O5 loadings(5%~100% mass fraction). The catalytic oxidation performance of NO was subsequently carried out. The results indicate that the 25%(mass fraction) SmMn2O5/γ-Al2O3 catalyst shows the lowest light off temperature(260℃) among the load mass fraction of 35%, 25%, 15% and 5%. Continuing increasing SMO loadings mass fraction up to 50% and 75%, it is found that the light off temperature of the two samples only drops off 10℃ relative to 25% SmMn2O5/γ-Al2O3 catalyst and increases 40℃ in regards to the pure phase of mullite SMO. This exploration will provide some guidance for the effective utilization of SmMn2O5 catalyst in the future, and introduce certain method for the design of supported non-noble metal catalysts.
  • 加载中
    1. [1]

      Ban-Weiss G A, McLaughlin J P, Harley R A. Long-Term Changes in Emissions of Nitrogen Oxides and Particulate Matter from On-road Gasoline and Diesel Vehicles[J]. Atmos Environ, 2008,42(2):220-232. doi: 10.1016/j.atmosenv.2007.09.049

    2. [2]

      Pope Ⅲ C A. Review:Epidemiological Basis for Particulate Air Pollution Health Standards[J]. Aerosol Sci Technol, 2000,32(1):4-14. doi: 10.1080/027868200303885

    3. [3]

      Koebel M, Madia G, Elsener M. Selective Catalytic Reduction of NO and NO2 at Low Temperatures[J]. Catal Today, 2002,73(3/4):239-247.  

    4. [4]

      Koebel M, Elsener M, Madia G. Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures[J]. Ind Eng Chem Res, 2001,40(1):52-59. doi: 10.1021/ie000551y

    5. [5]

      Wu C, Schmidt D J, Wolverton C. Accurate Coverage-Dependence Incorporated into First-principles Kinetic Models:Catalytic NO Oxidation on Pt(111)[J]. J Catal, 2012,286(7):88-94.  

    6. [6]

      Schmitz P J, Kudla R J, Drews A R. NO Oxidation over Supported Pt:Impact of Precursor, Support, Loading, and Processing Conditions Evaluated via High Throughput Experimentation[J]. Appl Catal B, 2006,67(3/4):246-256.  

    7. [7]

      Xue E, Seshan K, Ross J R H. Roles of Supports, Pt Loading and Pt Dispersion in the Oxidation of NO to NO2 and of SO2 to SO3[J]. Appl Catal, B, 1996,11(1):65-79.  

    8. [8]

      Tang X F, Li J H, Wei L S. MnOx-SnO2 Catalysts Synthesized by a Redox Coprecipitation Method for Selective Catalytic Reduction of NO by NH3[J]. Chinese J Catal, 2008,29(6):531-536. doi: 10.1016/S1872-2067(08)60049-2

    9. [9]

      Li J, Chen J, Ke R. Effects of Precursors on the Surface Mn Species and the Activities for NO Reduction over MnOx/TiO2 Catalysts[J]. Catal Commun, 2007,8(12):1896-1900. doi: 10.1016/j.catcom.2007.03.007

    10. [10]

      Smirniotis P G, Sreekanth P M, Pena D A. Manganese Oxide Catalysts Supported on TiO2, Al2O3, and SiO2:A Comparison for Low-temperature SCR of NO with NH3[J]. Ind Eng Chem Res, 2006,45(19):6436-6443.

    11. [11]

      Zhao B, Ran R, Wu X. Phase Structures, Morphologies, and NO Catalytic Oxidation Activities of Single-phase MnO2 Catalysts[J]. Appl Catal, A, 2016,514:24-34. doi: 10.1016/j.apcata.2016.01.005

    12. [12]

      Qi G, Li W. NO Oxidation to NO2 over Manganese-Cerium Mixed Oxides[J]. Catal Today, 2015,258(1):205-213.  

    13. [13]

      Cui M S, Li Y, Wang X Q. Effect of Preparation Method on MnOx-CeO2 Catalysts for NO Oxidation[J]. J Rare Earth, 2013,31(6):572-576. doi: 10.1016/S1002-0721(12)60322-6

    14. [14]

      Wang W, McCool G, Kapur N. Mixed-phase Oxide Catalyst Based on Mn-mullite(Sm, Gd) Mn2O5 for NO Oxidation in Diesel Exhaust[J]. Science, 2012,337(6096):832-835. doi: 10.1126/science.1225091

    15. [15]

      Li H B, Yang Z, Liu J Y. Electronic Properties and Native Point Defects of High Efficient NO Oxidation Catalysts SmMn2O5[J]. Appl Phys Lett, 2016,109(21)211903. doi: 10.1063/1.4968786

    16. [16]

      Huang S J, Walters A B, Vannice M A. TPD, TPR and DRIFTS Studies of Adsorption and Reduction of NO on La2O3 Dispersed on Al2O3[J]. Appl Catal, B, 2000,26(2):101-118.  

    17. [17]

      Feng Z, Wang J, Liu X. Promotional Role of La Addition in the NO Oxidation Performance of a SmMn2O5 Mullite Catalyst[J]. Catal Sci Technol, 2016,6(14):5580-5589. doi: 10.1039/C5CY01919B

    18. [18]

      Machocki A, Ioannides T, Stasinska B. Manganese-Lanthanum Oxides Modified with Silver for the Catalytic Combustion of Methane[J]. J Catal, 2004,227(2):282-296. doi: 10.1016/j.jcat.2004.07.022

    19. [19]

      Cimino S, Lisi L, De Rossi S. Methane Combustion and CO Oxidation on LaAl1-xMnxO3 Perovskite-type Oxide Solid Solutions[J]. Appl Catal B, 2003,43(4):397-406.  

    20. [20]

      Zhu Y, Sun Y, Niu X. Preparation of La-Mn-O Perovskite Catalyst by Microwave Irradiation Method and Its Application to Methane Combustion[J]. Catal Lett, 2010,135(1/2):152-158.  

    21. [21]

      Trawczyński J, Bielak B, Mis'ta W O. Oxidation of Ethanol over Supported Manganese Catalysts-Effect of the Carrier[J]. Appl Catal B, 2005,55(4):277-285. doi: 10.1016/j.apcatb.2004.09.005

    22. [22]

      Szabo V, Bassir M, Van Neste A. Perovskite-type Oxides Synthesized by Reactive Grinding:Part Ⅱ:Catalytic Properties of LaCo(1-x)FexO3 in VOC Oxidation[J]. Appl Catal, B, 2002,37(2):175-180. doi: 10.1016/S0926-3373(01)00328-9

    23. [23]

      Huang L, Bassir M, Kaliaguine S. Reducibility of Co3+ in Perovskite-type LaCoO3 and Promotion of Copper on the Reduction of Co3+ in Perovskite-type Oxides[J]. Appl Surf Sci, 2005,243(1-4):360-375. doi: 10.1016/j.apsusc.2004.09.079

    24. [24]

      Chen Z Z, Liu X, Cho K. Density Functional Theory Study of the Oxygen Chemistry and NO Oxidation Mechanism on Low-index Surfaces of SmMn2O5 Mullite[J]. ACS Catal, 2015,5(8):4913-4926. doi: 10.1021/acscatal.5b00249

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(593)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return