Citation: HUANG He, LI Yayu, GUO Ziyan, SHI Dongjian, ZHANG Hongji, CHEN Mingqing. Preparation and Properties of Dual Responsive Self-healing Bio-based Hydrogels[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 146-154. doi: 10.11944/j.issn.1000-0518.2019.02.180106 shu

Preparation and Properties of Dual Responsive Self-healing Bio-based Hydrogels

  • Corresponding author: SHI Dongjian, djshi@jiangnan.edu.cn
  • Received Date: 10 April 2018
    Revised Date: 7 May 2018
    Accepted Date: 15 June 2018

    Fund Project: the Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX_1470Supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province(No.KYCX_1470)

Figures(10)

  • Phenylboronic acid and derivatives that conjugate with diol units to form a reversible ester bond can be used to prepare self-healing and stimuli-responsive materials. Stimuli-responsive hydrogels based on phenylboronic acid have been reported to have excellent self-healing properties. However, in these examples, employed polymers are not fully degradable nor have low biocompatibility. Therefore, this study aims to prepare a bio-based hydrogel for potential biomedical applications. Poly(γ-glutamic acid-g-3-aminophenylboronic acid)(γ-PGA-g-APBA) was synthesized by grafting 3-aminophenylboronic acid(APBA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide(EDC) and N-hydroxysuccinimide(NHS) as catalysts, and guar gum was modified by cationic etherification agent, 2, 3-epoxypropyltrimethylammonium chloride(CHGTA). These two modified bio-polymers were characterized by Fourier transform infrared(FT-IR) spectroscopy, nuclear magnetic resonance(1H NMR), and ultraviolet-visible(UV-Vis) spectrophotometer, and were mixed to form hydrogels. Mechanical properties of the prepared hydrogels were characterized by the rheometer. The results show that(γ-PGA-g-APBA/CGG) hydrogels have self-healing and pH-responsive properties. The structure of the gels is damaged with large strain and reconstructed completely with small strain, indicating that the hydrogel have the self-healing property and the repeatability. With the increase of pH value from 7 to 9, the hydrogels are formed and their strengths increase with pH, due to the conversion of the trigonal boronic-ester bond to tetrahedral boronic-ester bond. In the presence of 4 g/L glucose, the formed gel dissociates and changes to sol, because of the competing reaction between glucose and guar gum with PBA group. Moreover, rheology test indicates the shear-thinning and injectable properties of the hydrogels. Thus, the bio-based(γ-PGA-g-APBA/CGG) hydrogels have the potential applications in sensors, medicine and tissue engineering.
  • 加载中
    1. [1]

      Shan M, Gong C, Li B Q. A pH, Glucose, and Dopamine Triple-responsive, Self-healable Adhesive Hydrogel Formed by Phenylborate-Catechol Complexation[J]. Polym Chem, 2017,8(19):2997-3005. doi: 10.1039/C7PY00519A

    2. [2]

      Roberts M C, Hanson M C, Massey A P. Dynamically Restructuring Hydrogel Networks Formed with Reversible Covalent Crosslinks[J]. Adv Mater, 2007,19(18):2503-2507. doi: 10.1002/(ISSN)1521-4095

    3. [3]

      Wang L, Liu M Z, Gao C M. A pH-, Thermo-, and Glucose-, Triple-responsive Hydrogels:Synthesis and Controlled Drug Delivery[J]. React Funct Polym, 2010,70(3):159-167. doi: 10.1016/j.reactfunctpolym.2009.11.007

    4. [4]

      JING Shuping, LIU Mingzhu, CHEN Shilan. Responsive Properties and Applications of the Intelligent Polymers and Hydrogels[J]. Acta Phys Chim Sin, 2007,23(3):438-446.  

    5. [5]

      DUAN Yuanshou, JIA Fengxia, WANG Shuo. Synthesis and Thermosensitivity of Poly(N-isopropylacrylamide)/Hydrotalite Hydrogel[J]. Chinese J Appl Chem, 2018,35(1):40-45.  

    6. [6]

      Clodt J I, Filiz V, Rangou S. Double Stimuli-Responsive Isoporous Membranes via Post-modification of pH-Sensitive Self-assembled Diblock Copolymer Membranes[J]. Adv Funct Mater, 2013,23(6):731-738. doi: 10.1002/adfm.v23.6

    7. [7]

      Zhao J Q, Liu J J, Han S C. Acid-Induced Disassemblable Nanoparticles Based on Cyclic Benzylidene Acetal-Functionalized Graft Copolymer via Sequential RAFT and ATRP Polymerization[J]. Polym Chem, 2014,5(6):1852-1856. doi: 10.1039/c3py01324c

    8. [8]

      Deforest C A, Polizzotti B D, Anseth K S. Sequential Click Reactions for Synthesizing and Patterning Three-Dimensional Cell Microenvironments[J]. Nat Mater, 2009,8(8):659-664. doi: 10.1038/nmat2473

    9. [9]

      Hackelbusch S, Rossow T, Becker H. Multiresponsive Polymer Hydrogels by Orthogonal Supramolecular Chain Cross-Linking[J]. Macromolecules, 2014,47(12):4028-4036. doi: 10.1021/ma5008573

    10. [10]

      Yan X Z, Xu D H, Chi X D. A Multiresponsive, Shape-Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self-assembly[J]. Adv Mater, 2012,24(3):362-369. doi: 10.1002/adma.201103220

    11. [11]

      Yuan J C, Fang X L, Zhang L X. Multi-responsive Self-healing Metallo-supramolecular Gels Based on "Click" Ligand[J]. J Mater Chem, 2012,22(23):11515-11522. doi: 10.1039/c2jm31347b

    12. [12]

      SHI Dongjian, WANG Fei, LIU Rongjin. Preparation and Properties of Catechol-Metal Complexation Hydrogels[J]. Polym Mater Sci Eng, 2016,32(5):156-171.  

    13. [13]

      Ma R J, Shi L Q. Phenylboronic Acid-Based Glucose-Responsive Polymeric Nanoparticles:Synthesis and Applications in Drug Delivery[J]. Polym Chem, 2014,5(5):1503-1518. doi: 10.1039/C3PY01202F

    14. [14]

      Dong Y, Wang W, Veiseh O. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation[J]. Langmuir, 2016,32(34):8743-7. doi: 10.1021/acs.langmuir.5b04755

    15. [15]

      Yesilyurt V, Webber M J, Appel E A. Injectable Self-healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties[J]. Adv Mater, 2016,28(1):86-91. doi: 10.1002/adma.201502902

    16. [16]

      Guo R W, Su Q, Zhang J W. Facile Access to Multisensitive and Self-healing Hydrogels with Reversible and Dynamic Boronic Ester and Disulfide Linkages[J]. Biomacromolecules, 2017,18(4):1356-1364. doi: 10.1021/acs.biomac.7b00089

    17. [17]

      YANG Ting, DENG Xinxing, DU Fusheng. Glucose-Responsive Hydrogels Based on ABA Triblock Copolymers Containing Phenylboronic Acid[J]. Acta Polym Sin, 2014,11:1553-1560.  

    18. [18]

      JI Yi. The Synthesis of Guar Gum Derivatives[D]. Dalian: Dalian University of Technology, 2005(in Chinese).

  • 加载中
    1. [1]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    5. [5]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    16. [16]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    17. [17]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(2)
  • Abstract views(643)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return