Citation: CHEN Hongyun, YANG Fanghong, LI Yupeng, HE Jiayu, CHE Mengqin, WANG Meichen, CHENG Chuanjie. Synthesis and Application of Water-Soluble Fe3O4 Magnetic Nano-catalyst[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 188-194. doi: 10.11944/j.issn.1000-0518.2019.02.180089 shu

Synthesis and Application of Water-Soluble Fe3O4 Magnetic Nano-catalyst

  • Corresponding author: CHENG Chuanjie, chengcj530@163.com
  • Received Date: 29 March 2018
    Revised Date: 7 June 2018
    Accepted Date: 4 July 2018

    Fund Project: the National Natural Science Foundation of China 21264008Supported by the National Natural Science Foundation of China(No.21564004, No.21264008)the National Natural Science Foundation of China 21564004

Figures(5)

  • Fe3O4 magnetic nano particles(MNPs) with sulfonic acid groups on the surface were readily prepared via coupling reaction between 4-amino phenylsulfonic acid diazonium tetrafluoroborate and Fe3O4 nano particles. Transmission electron microscopy(TEM) images reveal that the average size of these acidic particles is about 20 nm. These acidic particles show good solubility in water, but they are insoluble in most of common organic solvents, allowing easy isolation and recycling of the particles by their magnetic property in catalytic reactions. In terms of application, when the acidic magnetic particles were used to catalyze esterification reactions between carboxylic acids and alcohols, moderate to high isolated yields(71%~86%) of ester products were obtained. The optimized catalyst loading is 1.5%(mass fraction). Furthermore, 5-hydroxymethyl furfural(HMF) was also synthesized in a 32% yield from fructose utilizing the acidic magnetic particles as a catalyst.
  • 加载中
    1. [1]

      Huo M F, Wang L Y, Chen Y. Tumor-Selective Catalytic Nanomedicine by Nanocatalyst Delivery[J]. Nat Commun, 2017,8357. doi: 10.1038/s41467-017-00424-8

    2. [2]

      Wang J, Li Y, Zhang Y. Nanocatalysts:Precious-Metal-Free Nanocatalysts for Highly Efficient Hydrogen Production from Hydrous Hydrazine[J]. Adv Funct Mater, 2014,24(45):7073-7077.  

    3. [3]

      Hu H W, Xin J H, Hu H. Synthesis and Stabilization of Metal Nanocatalysts for Reduction Reactions-A Review[J]. J Mater Chem A, 2015,3(21):11157-11182. doi: 10.1039/C5TA00753D

    4. [4]

      CHEN Ziting, LIANG Ying. Preparation and Application of Pd Nanomaterials Grown in situ on Non-Through-Hole Porous Alumina[J]. Chinese J Appl Chem, 2017,34(6):705-711.  

    5. [5]

      Wang D, Astruc D. Fast-Growing Field of Magnetically Recyclable Nanocatalysts[J]. Chem Rev, 2014,114(14):6949-6985. doi: 10.1021/cr500134h

    6. [6]

      Gawande M B, Brancoa P S, Varma R S. Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene:Synthesis and Applications[J]. Chem Soc Rev, 2013,42(2):3371-3393.  

    7. [7]

      FU Pengyuan, YANG Chun. Preparation and Catalytic Performance of Zr(SO4)2·4H2O/SBA-15 Solid Acid Catalysts[J]. Chinese J Appl Chem, 2010,27(8):924-930.  

    8. [8]

      ZHAO Bo, HU Shanglian, GONG Daoyong. New Advances on Hydrolysis of Cellulose to Glucose by Solid Acid[J]. Chem Ind Eng Prog, 2017,36(2):555-567.  

    9. [9]

      HUANG Qinghua, CHEN Ming, BAI Xiongxiong. Facile Synthesis of Ethyl Carboxylates via H2NSO3H/H2SO4 Synergistic Catalysis[J]. Chem Res Appl, 2014,26(2):277-280. doi: 10.3969/j.issn.1004-1656.2014.02.021

    10. [10]

      Veisi H, Taheri S, Hemmati S. Preparation of Polydopamine Sulfamic Acid-Functionalized Magnetic Fe3O4 Nanoparticles with a Core/Shell Nanostructure as Heterogeneous and Recyclable Nanocatalysts for the Acetylation of Alcohols, Phenols, Amines and Thiols under Solvent-Free Conditions[J]. Green Chem, 2016,18(23):6337-6348. doi: 10.1039/C6GC01975G

    11. [11]

      Kolvari E, Koukabi N, Armandpour O. A Simple and Efficient Synthesis of 3, 4-Dihydropyrimidin-2-(1H)-Ones via Biginelli Reaction Catalyzed by Nanomagnetic-Supported Sulfonic Acid[J]. Tetrahedron, 2014,70(6):1383-1386. doi: 10.1016/j.tet.2013.10.085

    12. [12]

      Koukabi N, Kolvari E, Zolfigol M A. A Magnetic Particle-Supported Sulfonic Acid Catalyst:Tuning Catalytic Activity Between Homogeneous and Heterogeneous Catalysis[J]. Adv Synth Catal, 2012,354(10):2001-2008. doi: 10.1002/adsc.v354.10

    13. [13]

      Griffete N, Herbst F, Pinson J. Preparation of Water-Soluble Magnetic Nanocrystals Using Aryl Diazonium Salt Chemistry[J]. J Am Chem Soc, 2011,133(6):1646-1649. doi: 10.1021/ja108928b

    14. [14]

      WANG Jun, ZHANG Chunpeng, OUYANG Pingkai. Advances in Production and Application of 5-Hydroxymethyl Furfural[J]. Chem Ind Eng Prog, 2008,27(5):702-707. doi: 10.3321/j.issn:1000-6613.2008.05.013

    15. [15]

      Rosatella A A, Simeonov S P, Frade R F M. 5-Hydroxymethylfurfural(HMF) as a Building Block Platform:Biological Properties, Synthesis and Synthetic Applications[J]. Green Chem, 2011,13(4):754-793. doi: 10.1039/c0gc00401d

    16. [16]

      Wang S G, Zhang Z H, Liu B. Catalytic Conversion of Fructose and 5-Hydroxymethylfurfural into 2, 5-Furandicarboxylic Acid over a Recyclable Fe3O4-CoOx Magnetite Nanocatalyst[J]. ACS Sustainable Chem Eng, 2015,3(3):406-412. doi: 10.1021/sc500702q

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(9)
  • Abstract views(559)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return