Citation: ZHANG Zhefeng, HUANG Xiaodong, WEN Liping. Inspired by Self-cleaning Effect of Lotus Leaf: Surface Modification and Antifouling Performance with Surgical Clothing[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 34-40. doi: 10.11944/j.issn.1000-0518.2019.01.180323 shu

Inspired by Self-cleaning Effect of Lotus Leaf: Surface Modification and Antifouling Performance with Surgical Clothing

  • Corresponding author: WEN Liping, wen@mail.ipc.ac.cn
  • Received Date: 8 October 2018
    Revised Date: 15 October 2018
    Accepted Date: 17 October 2018

    Fund Project: the National Natural Science Foundation of China 21625303the National Key R&D Program of China 2017YFA0206900Supported by the National Key R&D Program of China(No.2017YFA0206900), the National Natural Science Foundation of China(No.21625303)

Figures(5)

  • To improve medical protective performance of current commercial surgical clothing under special medical operating conditions and decrease the cross-infection risk of medical personnel and patient due to contacting blood and body fluids carrying pathogens. Inspired by self-cleaning effect of lotus leaf, superhydrophobic/superoleophobic technology is used to modify the commercial surgical clothing surface with fluorine-containing amphiphobic solution for improving its anti-fouling(waterproof, oil-proof, and anti-blood) performance. Scanning electron microscopy and element analysis characterizations verify that the fluorine-containing polymer is fixed on the surgical clothing surface. The waterproof, oil-proof, and anti-blood pollution performances of the modified surgical clothing are conducted, and the results show that the water contact angle of modified surgical clothing surface reaches to (138±2)°, meanwhile the roll angle decreases to 4.0°, indicating the obvious improvement of waterproof performance. Additionally, modified surgical clothing is hard to be wetted by oil droplet for at least 60 seconds. And it allows blood droplet quickly rolling off modified surgical clothing surface by tilting the surface to 20.6° showing low adhesion characteristic to blood droplet. Meanwhile, it keeps excellent water vapor permeability(7.90 g/(min·m2)).
  • 加载中
    1. [1]

      WANG Yuxiao, LI Jing, WANG Dan. Progress in the Research and Application of Medical Nonwovens[J]. Nonwovens Technol, 2017,12:69-72.  

    2. [2]

      ZHAO Jun, CHEN Dongxia, ZHANG Bing. Analysis of Feasibility of Recycle of Sterilized SMS Nonwovens Packages[J]. Chinese J Nosocomiol, 2013,23(13):3205-3209.  

    3. [3]

      WANG Jie. Study on "Three Repellent and Antistatic/Directional Water-Transfer" Finishing of Non-woven Fabric for Suegical Gown[D]. Shanghai: Donghua University, 2013(in Chinese). 

    4. [4]

      WANG Zongqian, SHEN Jieliang, WU Xiaoyuan. Antibaterial Finishing of Polypropylene SMS Non-woven Fabrics[J]. J Anhui Polytech Univ, 2017,32(5):31-35. doi: 10.3969/j.issn.2095-0977.2017.05.007

    5. [5]

      WANG Jie, YIN Baopu, JIN Xiangyu. 'Three Repellent and Antistatic/Directional Water-Transfer' Foam Coating Finishing for SMS Surgical Gown Material on Two Sides[J]. J Donghua Univ, 2014,40(4):477-480.  

    6. [6]

      Cassie A B D. Wettability of Porous Surfaces[J]. Trans Faraday Soc, 1944,40:546-551. doi: 10.1039/tf9444000546

    7. [7]

      Feng L, Li S, Li Y. Super-hydrophobic Surfaces:From Natural to Artificial[J]. Adv Mater, 2002,14:1857-1860. doi: 10.1002/adma.200290020

    8. [8]

      Chen Y, Zhang C, Wang Y. Study of Self-crosslinking Acrylate Latex Containing Fluorine[J]. J Appl Polym Sci, 2003,90:3609-3616. doi: 10.1002/(ISSN)1097-4628

    9. [9]

      GU Guotuan, ZHANG Zhijun, WU Zhishen. Preparation and Surface Water Repellency of a Fluoro-containing Acrylic Acid Resin[J]. Chem Res, 2005,16(2):32-34. doi: 10.3969/j.issn.1008-1011.2005.02.010

    10. [10]

      CAI Xuediao, HUANG Ru, ZUO Ruihong. Smart Surface Switching from Oleophobic/Hydrophobic to Hydrophilic:Short Perfluoroalkyl-Containing Copolymer Treated Cotton Fabrics[J]. Ion Exchange Adsorpt, 2013,29(1):23-33.  

    11. [11]

      Honda K, Morita M, Otsuka H. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films[J]. Macromolecules, 2005,38(13):5699-5705. doi: 10.1021/ma050394k

    12. [12]

      ZHU Shungen. Fluorine-containing Fabric Finishing Agents[J]. Organo-Fluorine Ind, 1997,4:21-43.  

    13. [13]

      CAO Feng, GUAN Zisheng, LI Dongxu. Preparation of Material Surface Structure Similar to Hydrophobic Structure of Lotus Leaf[J]. J Mater Sci Eng, 2007,25(4):602-605. doi: 10.3969/j.issn.1673-2812.2007.04.027

    14. [14]

      WAN Yanling, CONG Xi, WANG Xiaojun. Coupling Mechanism of Hydrophobicity of Dragonfly Wing Surface[J]. Trans Chinese Soc Agric Mach, 2009,40(9):205-208.  

    15. [15]

      XU Kaile, FU Chao, XU Mengya. Preparation of Low Adhesion Superhydrophobic Metal Mesh and Its Application to Oil Spillage Cleanup[J]. Surf Technol, 2017,46(11):37-46.  

    16. [16]

      CHENG Zhongjun, LAI Hua, FU Kewei. Fabrication of Superoleophobic Copper Surfaces with Low Adhesion and Acid/Basic-Resistance in Water[J]. Chem J Chinese Univ, 2013,34(12):2778-2782. doi: 10.7503/cjcu20130842

    17. [17]

      Zhu T, Wu J, Zhao N. Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss[J]. Adv Healthcare Mater, 2018,7(7)1701086. doi: 10.1002/adhm.v7.7

  • 加载中
    1. [1]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    16. [16]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    17. [17]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

Metrics
  • PDF Downloads(17)
  • Abstract views(914)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return