Citation: LIU Weiqiang, CUI Rongzhen, WU Ruixia, LI Yunhui, YANG Xiuyun, ZHOU Liang. Recent Progress on Blue Delayed Fluorescent Materials and Devices[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 1-9. doi: 10.11944/j.issn.1000-0518.2019.01.180071 shu

Recent Progress on Blue Delayed Fluorescent Materials and Devices

  • Corresponding author: YANG Xiuyun, Yangxiuyun1@126.com ZHOU Liang, zhoul@ciac.ac.cn
  • Received Date: 14 March 2018
    Revised Date: 21 May 2018
    Accepted Date: 8 June 2018

    Fund Project: the Development and Reform Commission Project of Jilin Province 2017C050Supported by the Development and Reform Commission Project of Jilin Province(No.2017C050)

Figures(2)

  • Organic light-emitting diodes(OLEDs) have attracted extensive attention throughout the world due to their potential advantages in full-color flat-panel displays such as low voltage, weight, high efficiency and fast response, etc. The development of devices and materials has attracted more attention. According to different electroluminescent mechanism, the materials of OLEDs include fluorescent materials and phosphorescent materials. Recently, blue fluorescent materials become a hot spot in research and play an important role in the developing of OLEDs and possess much more superiority than phosphorescent materials. In this article, we described and summarized recent progress of blue delayed fluorescent materials. The trend and development were finally prospected.
  • 加载中
    1. [1]

      Tang C W, Vanslyke S A. Organic Electroluminescent Diodes[J]. Appl Phys Lett, 1987,51:913-915. doi: 10.1063/1.98799

    2. [2]

      Tsujimoto H, Ha D G, Markopoulos G. Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer[J]. J Am Chem Soc, 2017,139(13):4894-4900. doi: 10.1021/jacs.7b00873

    3. [3]

      ZHAO Xuesen, CUI Rongzhen, LI Yunhui. Research Progress on Red Iridium Complexes Phosphorescent Materials and Devices[J]. Chinese J Appl Chem, 2016,33(9):1002-1008.  

    4. [4]

      Ban X, Jiang W, Sun K. Self-Host Blue Dendrimer Comprised of Thermally Activated Delayed Fluorescence Core and Bipolar Dendrons for Efficient Solution-Processible Nondoped Electroluminescence[J]. ACS Appl Mater Interfaces, 2017,9(8):7339-7346. doi: 10.1021/acsami.6b14922

    5. [5]

      SU Yumiao, LIN Haijuan, LI Wenmu. The Application of Carbazole and Its Derivatives in OLED[J]. Prog Chem, 2015,27(10):1384-1399. doi: 10.7536/PC150304

    6. [6]

      CUI Rongzhen, TANG Yanru, MA Yuqin. Research Progress of Investigation on Organic Blue-Light-Emitting Materials and Diodes[J]. Chinese J Appl Chem, 2015,32(8):855-872.  

    7. [7]

      Lee M T, Liao C H, Tsai C H. Deep-Blue Doped Organic Light-Emitting Devices[J]. Adv Mater, 2005,17(20):2493-2497. doi: 10.1002/(ISSN)1521-4095

    8. [8]

      Gao Z Q, Li Z H, Xia P F. Efficient Deep-Blue Organic Light-Emitting Diodes:Arylamine-Substituted Oligofluorenes[J]. Adv Funct Mater, 2007,17(16):3194-3199. doi: 10.1002/(ISSN)1616-3028

    9. [9]

      Zhao X, Zhou L, Jiang Y. Efficient Organic Blue Fluorescent Light-Emitting Devices with Improved Carriers' Balance on Emitter Molecules by Constructing Supplementary Light-Emitting Layer[J]. Dyes Pigm, 2016,130:148-153. doi: 10.1016/j.dyepig.2016.03.013

    10. [10]

      Li Y, Zhou L, Jiang Y. High Performance Pure Blue Organic Fluorescent Electroluminescent Devices by Utilizing a Traditional Electron Transport Material as the Emitter[J]. J Mater Chem C, 2017,5(17):4219-4225. doi: 10.1039/C7TC00725F

    11. [11]

      Yook K S, Lee J Y. Organic Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes[J]. Adv Mater, 2012,24(24):3169-3190. doi: 10.1002/adma.v24.24

    12. [12]

      Zhang Q, Li J, Shizu K. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes[J]. J Am Chem Soc, 2012,134(36):14706-14709. doi: 10.1021/ja306538w

    13. [13]

      Cha S J, Han N S, Song J K. Efficient Deep Blue Fluorescent Emitter Showing High External Quantum Efficiency[J]. Dyes Pigm, 2015,120:200-207. doi: 10.1016/j.dyepig.2015.04.020

    14. [14]

      Li G, Zhao J, Zhang D. Mechanochromic Asymmetric Sulfone Derivatives for Efficient Blue Organic Light-Emitting Diodes[J]. J Mater Chem C, 2016,4(37):8787-8794. doi: 10.1039/C6TC02917E

    15. [15]

      Helfrich W, Schneider W G. Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene[J]. J Chem Phys, 1966,44(8):2902-2909. doi: 10.1063/1.1727152

    16. [16]

      Endo A, Ogasawara M, Takahashi A. Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light Emitting Diodesa Novel Mechanism for Electroluminescence[J]. Adv Mater, 2009,21(47):4802-4806. doi: 10.1002/adma.200900983

    17. [17]

      Tanaka H, Shizu K, Miyazaki H. Efficient Green Thermally Activated Delayed Fluorescence(TADF) from a Phenoxazine-Triphenyltriazine(PXZ TRZ) Derivative[J]. Chem Commun, 2012,48(93):11392-11394. doi: 10.1039/c2cc36237f

    18. [18]

      Chen Y H, Lin C C, Huang M J. Superior Upconversion Fluorescence Dopants for Highly Efficient Deep-Blue Electroluminescent Devices[J]. Chem Sci, 2016,7(7):4004-4051. doi: 10.1039/C6SC01463A

    19. [19]

      Hu J Y, Pu Y J, Fumiya S. Bisanthracene-Based Donor-Acceptor-Type Light-Emitting Dopants:Highly Efficient Deep-Blue Emission in OrganicLight-Emitting Devices[J]. Adv Funct Mater, 2014,24(14):2064-2071. doi: 10.1002/adfm.v24.14

    20. [20]

      Chen Y H, Lin C C, Huang M J. Superrior Upconversion Fluorescence Dopants for Highly Efficient Deep-Blue Electroluminescent Devices[J]. Chem Sci, 2016,7(7):4004-4051. doi: 10.1039/C6SC01463A

    21. [21]

      Uoyama H, Goushi K, Shizu K. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence[J]. Nature, 2012,492(7428):234-238. doi: 10.1038/nature11687

    22. [22]

      Endo A, Sato K, Yoshimura K. Efficient Up-Conversion of Triplet Excitonsinto a Singlet State and Its Application to Organic Light Emitting Diodes[J]. Appl Phys Lett, 2011,98083302. doi: 10.1063/1.3558906

    23. [23]

      Sun J W, Lee J H, Kim J J. A Fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency[J]. Adv Mater, 2014,26(32):5684-5688. doi: 10.1002/adma.201401407

    24. [24]

      Kim B S, Lee J Y. Engineering of Mixed Host for High External Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescence Device[J]. Adv Funct Mater, 2014,24(25):3970-3977. doi: 10.1002/adfm.v24.25

    25. [25]

      Tsai W L, Huang M H, Lee W K. A Versatile Thermally Activated Delayed Fluorescence Emitter for Both Highly Efficient Doped and Non-Doped Organic Light Emitting Devices[J]. Chem Commun, 2015,51(71):13662-13665. doi: 10.1039/C5CC05022G

    26. [26]

      Hirata S, Sakai Y, Masui K. Highly Efficient Blue Electroluminescence Based on Thermally Activated Delayed Fluorescence[J]. Nat Mater, 2015,14(3):330-336. doi: 10.1038/nmat4154

    27. [27]

      Park I S, Lee J, Yasuda T. High-Performance Blue Organic Light-Emitting Diodes with 20% External Electroluminescence Quantum Efficiency Based on Pyrimidine-Containing Thermally Activated Delayed Fluorescence Emitters[J]. J Mater Chem C, 2016,4(34):7911-7916. doi: 10.1039/C6TC02027E

    28. [28]

      Liu W, Zheng C J, Wang K. Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices[J]. ACS Appl Mater Interfaces, 2015,7(34):18930-18936. doi: 10.1021/acsami.5b05648

    29. [29]

      Komatsu R, Sasabe H, Seino Y. Light-Blue Thermally Activated Delayed Fluorescent Emitters Realizing a High External Quantum Efficiency of 25% and Unprecedented Low Drive Voltages in OLEDs[J]. J Mater Chem C, 2016,4(12):2274-2278. doi: 10.1039/C5TC04057D

    30. [30]

      Lee D R, Hwang S H, Jeon S K. Benzofurocarbazole and Benzothienocarbazoleas Donors for Improved Quantum Efficiency in Blue Thermally Activated Delayed Fluorescent Devices[J]. Chem Commun, 2015,51(38):8105-8107. doi: 10.1039/C5CC01940K

    31. [31]

      Lee S Y, Adachi C, Yasuda T. High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives[J]. Adv Mater, 2016,28(23):4626-4631. doi: 10.1002/adma.v28.23

    32. [32]

      Sun J W, Baek J Y, Kim K H. Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter(DTPDDA) and a Highly Efficient Blue Light Emitting Diode[J]. Chem Mater, 2015,27:6675-6681. doi: 10.1021/acs.chemmater.5b02515

    33. [33]

      Tsai W L, Huang M H, Lee W K. A Versatile Thermally Activated Delayed Fluorescence Emitter for Both Highly Efficient Doped and Non-doped Organic Light Emitting Devices[J]. Chem Commun, 2015,51(71):13662-13665. doi: 10.1039/C5CC05022G

    34. [34]

      Lin T, Chatterjee T, Tsai W. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid[J]. Adv Mater, 2016,28(32):6976-6983. doi: 10.1002/adma.201601675

    35. [35]

      Zhang D, Cai M, Bin Z. Highly Efficient Blue Thermally Activated Delayed Fluorescent OLEDs with Record-Low Driving Voltages Utilizing High Triplet Energy Hosts with Small Singlet-Triplet Splitting[J]. Chem Sci, 2016,7(5):3355-3363. doi: 10.1039/C5SC04755B

    36. [36]

      Sun J W, Kim K H, Moon C K. Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter(2CzPN)[J]. ACS Appl Mater Interfaces, 2016,8(15):9806-9810. doi: 10.1021/acsami.6b00286

    37. [37]

      Zhang Q, Li B, Huang S. Efficient Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence[J]. Nat Photonics, 2014,8(4):326-332. doi: 10.1038/nphoton.2014.12

    38. [38]

      Wu S, Aonuma M, Zhang Q, Huang S. High-Efficiency Deep-Blue Organic Light-Emitting Diodes Based on a Thermally Activated Delayed Fluorescence Emitter[J]. J Mater Chem C, 2014,2(3):421-424. doi: 10.1039/C3TC31936A

    39. [39]

      Zhang Q, Li J, Shizu K. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes[J]. J Am Chem Soc, 2012,134(36):14706-14709. doi: 10.1021/ja306538w

    40. [40]

      Lee S Y, Yasuda T, Yang Y S. Luminous Butterflies:Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence OLEDs[J]. Angew Chem, 2014,53(25):6520-6524.  

    41. [41]

      Kim M, Choi J M, Lee J Y. Simultaneous Improvement of Emission Color, Singlet-Triplet Energy Gap, and Quantum Efficiency of Blue Thermally Activated Delayed Fluorescent Emitters Using a 1-Carbazolylcarbazole Based Donor[J]. Chem Commun, 2016,52(65):10032-10035.  

    42. [42]

      Liu M, Seino Y, Chen D. Blue Thermally Activated Delayed Fluorescence Materials Based on Bis(phenylsulfonyl)benzene Derivatives[J]. Chem Commun, 2015,51(91):16353-16356. doi: 10.1039/C5CC05435D

    43. [43]

      Cho Y J, Jeon S K, Lee S S. Donor Interlocked Molecular Design for Fluorescence-like Narrow Emission in Deep Blue Thermally Activated Delayed Fluorescent Emitters[J]. Chem Mater, 2016,28(15):5400-5405.  

    44. [44]

      Hatakeyama T, Shiren K, Nakajima K. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules:Efficient HOMO-LUMO Separation by the Multiple Resonance Effect[J]. Adv Mater, 2016,28(14):2777-2781. doi: 10.1002/adma.201505491

    45. [45]

      Zhang J, Ding D, Ying W. Multiphosphine-Oxide Hosts for Ultralow-Voltage-DrivenTrue-Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency beyond 20%[J]. Adv Mater, 2016,28(3):479-485. doi: 10.1002/adma.v28.3

    46. [46]

      Zhang J, Ding D, Xu H. Extremely Condensing Triplet States of DPEPO-Type Hosts Through Constitutional Isomerization for High-Efficiency Deep-Blue Thermally Activated Delayed Fluorescence Diodes[J]. Chem Sci, 2016,7(4):2870-2882. doi: 10.1039/C5SC04848F

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    11. [11]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    14. [14]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    15. [15]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(21)
  • Abstract views(1192)
  • HTML views(286)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return