Catalytic Oxygen Reduction Property of Carbon Nanotubes Supported Tetra-nitro-metal Phthalocyanines-MnO2 Dual Catalysts
- Corresponding author: LI Kezhi, likezhi@nwpu.edu.cn
Citation:
CHEN Fengying, LI Kezhi, HU Guangzhi. Catalytic Oxygen Reduction Property of Carbon Nanotubes Supported Tetra-nitro-metal Phthalocyanines-MnO2 Dual Catalysts[J]. Chinese Journal of Applied Chemistry,
;2019, 36(1): 97-106.
doi:
10.11944/j.issn.1000-0518.2019.01.180065
WANG Feng'e. Research Status and Technical Progress of Direct Methanol Fuel Cells[J]. Chinese J Rare Met, 2002,26(6):497-501. doi: 10.3969/j.issn.0258-7076.2002.06.019
TONG Yexiang, LIU Peng, SHEN Peikang. Prospects for Polymer Electrolyte Membrane Fuel Cell and Direct Methanol Fuel Cell[J]. Battery, 2002,32(3):178-180. doi: 10.3969/j.issn.1001-1579.2002.03.017
LIU Changpeng, YANG Hui, XING Wei. Electrocatalytic Performance of Pt-TiO2/C Complex Catalysts for Oxidation of Methanol[J]. Chem J Chinese Univ, 2002,23(7):1367-1370. doi: 10.3321/j.issn:0251-0790.2002.07.032
ZHAO Weili, ZHOU Debi, SUN Xinyang. One-Step Preparation of Carbon Supported Co-Phthalocyanine and Its Electrochemical Reduction of Oxygen in Base Medium[J]. Chinese J Appl Chem, 2010,27(2):183-190. doi: 10.3969/j.issn.1001-4160.2010.02.011
LI Xuguang, HAN Fei, XING Wei. Influence of Methanol on the Kinetics of Oxygen Reduction on Pt/C and CoPcTc/C[J]. Acta Phys-Chim Sin, 2003,19(4):380-384. doi: 10.3866/PKU.WHXB20030422
Kruusenberg I, Matisen L, Tammeveski K. Oxygen Electroreduction on Multi-Walled Carbon Nanotube Supported Metal Phthalocyanines and Porphyrins in Acid Media[J]. Int J Electrochem Sci, 2013,8(1):1057-1066.
Xu Z W, Li H J, Cao G X. Electrochemical Performance of Carbon Nanotube-Supported Cobalt Phthalocyanine and Its Nitrogen-Rich Derivatives for Oxygen Reduction[J]. J Mol Catal A:Chem, 2011,335(1/2):89-96.
Zhang L X, Liu C S, Zhuang L. Manganese Dioxide as an Alternative Cathodic Catalyst to Platinum in Microbial Fuel Cells[J]. Biosens Bioelectron, 2009,24(9):2825-2829. doi: 10.1016/j.bios.2009.02.010
ZHU Jianguo, ZHU Xiaohong, JIAO Rui. The Synthesis of Phthalocyanin Complex of Cobalt and Its Determination[J]. J Southwest Univ Natl(Nat Sci Ed), 2006,32(2):238-240.
Shaabani A, Maleki-Moghaddam R, Maleki A. Microwave Assisted Synthesis of Metal-Free Phthalocyanine and Metalophthalocyanines[J]. Dyes Pigm, 2007,74(74):279-282.
CONG Fangdi, NING Bo, DU Xiguang. Spectroanalysis of Teraamino-Phthalocyanines M(Ⅱ)[J]. J Mol Sci, 2004,20(1):27-32. doi: 10.3969/j.issn.1000-9035.2004.01.006
CHEN Wei, DUAN Wubiao, HE Chunying. Synthesis and Characterization of Two Monoamino Substituted Asymmetrical Phthalocyanine Zinc(Ⅱ)[J]. J Nat Sci Heilongjiang Univ, 2006,23(6):671-680.
Cortina H, Senent M L, Smeyers Y G. Ab Initio Comparative Study of the Structure and Properties of H2-Porphin and H2-Phthalocyanine. The Electronic Absorption Spectra[J]. J Phys Chem A, 2003,107(42):8968-8974. doi: 10.1021/jp0347320
XU Zhanwei. Preparation and Properties of One and Two Dimensional Carbon Nanostructured Electrocatalytic Material[D]. Northwestern Polytechnical University, 2011: 29-30(in Chinese).
Zhang M Y, Shao C L, Guo Z C. Highly Efficient Decomposition of Organic Dye by Aqueous-Solid Phase Transfer and in situ Photocatalysis Using Hierarchical Copper Phthalocyanine Hollow Spheres[J]. ACS Appl Mater Interfaces, 2011,3(7):2573-2578. doi: 10.1021/am200412t
ZHANG Jianqing. Electrochemical Measurement Technology[M]. Beijing:Chemical Industry Press, 2010(in Chinese).
Zhang D, Chi D, Okajima T. Catalytic Activity of Dual Catalysts System Based on Nano-manganese Oxide and Cobalt Octacyanophthalocyanine Toward Four-Electron Reduction of Oxygen in Alkaline Media[J]. Electrochim Acta, 2007,52(17):5400-5406. doi: 10.1016/j.electacta.2007.02.060
Li F, Chen W, Zhang S S. Development of DNA Electrochemical Biosensor Based on Covalent Immobilization of Probe DNA by Direct Coupling of Sol-Gel and Self-assembly Technologies[J]. Biosens Bioelectron, 2008,24(4):787-792.
Choi S, Choi R, Han S W. Synthesis and Characterization of Pt9Co Nanocubes with High Activity for Oxygen Reduction[J]. Chem Commun, 2010,46(27):4950-4952. doi: 10.1039/c0cc00392a
Wu G, Zelenay P. Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction[J]. Acc Chem Res, 2013,46(8):1878-1889. doi: 10.1021/ar400011z
Tammeveski K, Kontturi K, Nichols R J. Surface Redox Catalysis for O2 Reduction on Quinone-Modified Glassy Carbon Electrodes[J]. J Electroanal Chem, 2001,515(1/2):101-112.
Wiesener K, Ohms D, Neumann V. N4 Macrocycles as Electrocatalysts for the Cathodic Reduction of Oxygen[J]. Mater Chem Phys, 1989,22(7/8):457-475.
ZHANG Huan. Preparation of Nanoporous Nobel Metals and Their Catalytic Performance Towards Oxygen Reduction Reaction[D]. Ji'nan: University of Ji'nan, 2013: 21-22(in Chinese).
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
A.M=Fe; B.M=Co; C.M=Ni; D.M=Cu; E.γ-MnO2
A.M=Fe; B.M=Co; C.M=Ni; D.M=Cu
A.M=Fe; B.M=Co; C.M=Ni; D.M=Cu
A.M=Fe; B.M=Co; C.M=Ni; D.M=Cu
A.j-t curves of 0~3000 s; B.Expanded region of 2800~3000 s