Citation: CHEN Fengying, LI Kezhi, HU Guangzhi. Catalytic Oxygen Reduction Property of Carbon Nanotubes Supported Tetra-nitro-metal Phthalocyanines-MnO2 Dual Catalysts[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 97-106. doi: 10.11944/j.issn.1000-0518.2019.01.180065 shu

Catalytic Oxygen Reduction Property of Carbon Nanotubes Supported Tetra-nitro-metal Phthalocyanines-MnO2 Dual Catalysts

  • Corresponding author: LI Kezhi, likezhi@nwpu.edu.cn
  • Received Date: 9 March 2018
    Revised Date: 1 June 2018
    Accepted Date: 6 August 2018

    Fund Project: the National Natural Science Foundation of China 51432008the National Natural Science Foundation of China 21677171Supported by the National Natural Science Foundation of China(No.51432008, No.21677171), the Foundation of Shangluo University(No.17SKY027)the Foundation of Shangluo University 17SKY027

Figures(10)

  • The transition metal phthalocyanine has a high catalytic activity for oxygen reduction. MnO2 can catalyze the oxygen reduction reaction. However, the use of transition metal phthalocyanine and MnO2 as dual catalysts for oxygen reduction is quite few. Four types of carbon nanotubes supported tetra-nitro-metal phthalocyanines assemblies(CNT/TNMPc) were synthesized by phthalic anhydride-urea method. Dual catalyst CNT/TNMPc-MnO2 was prepared via adding γ-MnO2 into CNT/TNMPc. The optimal ratio of CNT/TNMPc to MnO2 was obtained by means of cyclic voltammetry. Effects of central metal ions of CNT/TNMPc on the catalytic performance for oxygen reduction reactivity were investigated. The results show that the catalytic efficiency order of the dual catalyst for oxygen reduction reactivity is CNT/TNFePc-MnO2 > CNT/TNCoPc-MnO2 > CNT/TNNiPc-MnO2 > CNT/TNCuPc-MnO2. All of those suggest that the catalytic activity of dual catalysts for oxygen reduction reaction is mainly affected by the nature of metal ions. In addition, the anti methanol performance of dual catalyst was tested in 0.1 mol/L KOH+0.5 mol/L CH3OH electrolyte solution. The results indicate that methanol-tolerant abilities of the CNT/TNMPc-MnO2 are excellent.
  • 加载中
    1. [1]

      WANG Feng'e. Research Status and Technical Progress of Direct Methanol Fuel Cells[J]. Chinese J Rare Met, 2002,26(6):497-501. doi: 10.3969/j.issn.0258-7076.2002.06.019

    2. [2]

      TONG Yexiang, LIU Peng, SHEN Peikang. Prospects for Polymer Electrolyte Membrane Fuel Cell and Direct Methanol Fuel Cell[J]. Battery, 2002,32(3):178-180. doi: 10.3969/j.issn.1001-1579.2002.03.017

    3. [3]

      LIU Changpeng, YANG Hui, XING Wei. Electrocatalytic Performance of Pt-TiO2/C Complex Catalysts for Oxidation of Methanol[J]. Chem J Chinese Univ, 2002,23(7):1367-1370. doi: 10.3321/j.issn:0251-0790.2002.07.032

    4. [4]

      ZHAO Weili, ZHOU Debi, SUN Xinyang. One-Step Preparation of Carbon Supported Co-Phthalocyanine and Its Electrochemical Reduction of Oxygen in Base Medium[J]. Chinese J Appl Chem, 2010,27(2):183-190. doi: 10.3969/j.issn.1001-4160.2010.02.011

    5. [5]

      LI Xuguang, HAN Fei, XING Wei. Influence of Methanol on the Kinetics of Oxygen Reduction on Pt/C and CoPcTc/C[J]. Acta Phys-Chim Sin, 2003,19(4):380-384. doi: 10.3866/PKU.WHXB20030422

    6. [6]

      Kruusenberg I, Matisen L, Tammeveski K. Oxygen Electroreduction on Multi-Walled Carbon Nanotube Supported Metal Phthalocyanines and Porphyrins in Acid Media[J]. Int J Electrochem Sci, 2013,8(1):1057-1066.  

    7. [7]

      Xu Z W, Li H J, Cao G X. Electrochemical Performance of Carbon Nanotube-Supported Cobalt Phthalocyanine and Its Nitrogen-Rich Derivatives for Oxygen Reduction[J]. J Mol Catal A:Chem, 2011,335(1/2):89-96.  

    8. [8]

      Zhang L X, Liu C S, Zhuang L. Manganese Dioxide as an Alternative Cathodic Catalyst to Platinum in Microbial Fuel Cells[J]. Biosens Bioelectron, 2009,24(9):2825-2829. doi: 10.1016/j.bios.2009.02.010

    9. [9]

      ZHU Jianguo, ZHU Xiaohong, JIAO Rui. The Synthesis of Phthalocyanin Complex of Cobalt and Its Determination[J]. J Southwest Univ Natl(Nat Sci Ed), 2006,32(2):238-240.  

    10. [10]

      Shaabani A, Maleki-Moghaddam R, Maleki A. Microwave Assisted Synthesis of Metal-Free Phthalocyanine and Metalophthalocyanines[J]. Dyes Pigm, 2007,74(74):279-282.  

    11. [11]

      CONG Fangdi, NING Bo, DU Xiguang. Spectroanalysis of Teraamino-Phthalocyanines M(Ⅱ)[J]. J Mol Sci, 2004,20(1):27-32. doi: 10.3969/j.issn.1000-9035.2004.01.006

    12. [12]

      CHEN Wei, DUAN Wubiao, HE Chunying. Synthesis and Characterization of Two Monoamino Substituted Asymmetrical Phthalocyanine Zinc(Ⅱ)[J]. J Nat Sci Heilongjiang Univ, 2006,23(6):671-680.  

    13. [13]

      Cortina H, Senent M L, Smeyers Y G. Ab Initio Comparative Study of the Structure and Properties of H2-Porphin and H2-Phthalocyanine. The Electronic Absorption Spectra[J]. J Phys Chem A, 2003,107(42):8968-8974. doi: 10.1021/jp0347320

    14. [14]

      XU Zhanwei. Preparation and Properties of One and Two Dimensional Carbon Nanostructured Electrocatalytic Material[D]. Northwestern Polytechnical University, 2011: 29-30(in Chinese).

    15. [15]

      Zhang M Y, Shao C L, Guo Z C. Highly Efficient Decomposition of Organic Dye by Aqueous-Solid Phase Transfer and in situ Photocatalysis Using Hierarchical Copper Phthalocyanine Hollow Spheres[J]. ACS Appl Mater Interfaces, 2011,3(7):2573-2578. doi: 10.1021/am200412t

    16. [16]

      ZHANG Jianqing. Electrochemical Measurement Technology[M]. Beijing:Chemical Industry Press, 2010(in Chinese).

    17. [17]

      Zhang D, Chi D, Okajima T. Catalytic Activity of Dual Catalysts System Based on Nano-manganese Oxide and Cobalt Octacyanophthalocyanine Toward Four-Electron Reduction of Oxygen in Alkaline Media[J]. Electrochim Acta, 2007,52(17):5400-5406. doi: 10.1016/j.electacta.2007.02.060

    18. [18]

      Li F, Chen W, Zhang S S. Development of DNA Electrochemical Biosensor Based on Covalent Immobilization of Probe DNA by Direct Coupling of Sol-Gel and Self-assembly Technologies[J]. Biosens Bioelectron, 2008,24(4):787-792.  

    19. [19]

      Choi S, Choi R, Han S W. Synthesis and Characterization of Pt9Co Nanocubes with High Activity for Oxygen Reduction[J]. Chem Commun, 2010,46(27):4950-4952. doi: 10.1039/c0cc00392a

    20. [20]

      Wu G, Zelenay P. Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction[J]. Acc Chem Res, 2013,46(8):1878-1889. doi: 10.1021/ar400011z

    21. [21]

      Tammeveski K, Kontturi K, Nichols R J. Surface Redox Catalysis for O2 Reduction on Quinone-Modified Glassy Carbon Electrodes[J]. J Electroanal Chem, 2001,515(1/2):101-112.  

    22. [22]

      Wiesener K, Ohms D, Neumann V. N4 Macrocycles as Electrocatalysts for the Cathodic Reduction of Oxygen[J]. Mater Chem Phys, 1989,22(7/8):457-475.  

    23. [23]

      ZHANG Huan. Preparation of Nanoporous Nobel Metals and Their Catalytic Performance Towards Oxygen Reduction Reaction[D]. Ji'nan: University of Ji'nan, 2013: 21-22(in Chinese). 

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(5)
  • Abstract views(1144)
  • HTML views(278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return