Citation: XIA Dongdong, HOU Yaqi, PAN Qianxia, HE Zihui, YANG Jianzhe, WANG Haibo. Adsorption of p-Nitrobenzene Derivatives by Polyacrylate Organic Membranes Based on 1, 4-Dimethoxy Pillar[5]arenes[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 24-33. doi: 10.11944/j.issn.1000-0518.2019.01.180054 shu

Adsorption of p-Nitrobenzene Derivatives by Polyacrylate Organic Membranes Based on 1, 4-Dimethoxy Pillar[5]arenes

  • Corresponding author: WANG Haibo, wanghaibo@njtech.edu.cn
  • Received Date: 27 February 2018
    Revised Date: 28 April 2018
    Accepted Date: 7 June 2018

Figures(17)

  • Pillararenes are columnar macrocyclic molecules that are different from crown ethers, calixarenes, and cucurbiturils, and have unique electron-rich cavities and modifiable mouth cavities. They can contain a variety of organic pollutants, and have broad application prospects for the adsorption and removal of organic pollutants. In this paper, the complexation of p-nitrobenzene derivatives with 1, 4-dimethoxy pillar[5]arenes(MeP5A) was studied by nuclear magnetic resonance and ultraviolet titration, and the inclusion constant was determined. On this basis, MeP5A was physically mixed into polyacrylate(PA) emulsion to prepare the MeP5A/polyacrylate(MeP5A/PA) blending emulsion. Then, the blending emulsion was made into the MeP5A/PA nanofiber membrane by the electrospinning technology. The structure and morphology of the MeP5A/PA nanofiber membrane were characterized by infrared spectroscopy and scanning electron microscopy. The MeP5A/PA nanofiber membrane was used for adsorption of four kinds of p-nitrobenzene derivatives. The results reveal that p-nitrophenylacetonitrile holds the strongest complexation intensity with MeP5A[Ka=(6.0±0.3)×102 L/mol]. The introduction of MeP5A into the PA nanofiber membrane increases the adsorption capacity but does not change the fibrous morphology. The optimum adsorption equilibrium time of MeP5A/PA nanofiber membranes is 2 h, and the higher the content of MeP5A in MeP5A/PA nanofiber membranes, the larger the adsorption capacity. When the concentration of MeP5A in the adsorbed solution reaches 4 mmol/L(the corresponding MeP5A mole in the membrane is 1.4×10-2 mmol), the adsorption equilibrium is reached. Then the content of MeP5A continues to increase, and the adsorption capacity does not change much.
  • 加载中
    1. [1]

      Cao Y, Li Y, Hu X Y. Supramolecular Nanoparticles Constructed by DOX-Based Prodrug with Water-Soluble Pillar [6] arene for Self-catalyzed Rapid Drug Release[J]. Chem Mater, 2015,27(3):1110-1119. doi: 10.1021/cm504445r

    2. [2]

      Cao Y, Hu X Y, Li Y. Multistimuli-Responsive Supramolecular Vesicles Based on Water-Soluble Pillar [6] arene and Saint Complexation for Controllable Drug Release[J]. J Am Chem Soc, 2014,136(30):10762-10769. doi: 10.1021/ja505344t

    3. [3]

      Zhou J, Chen M, Diao G W. Synthesis of the First Amphiphilic Pillar [6] Arene and Its Enzyme-Responsive Self-assembly in Water[J]. Chem Commun, 2014,50(80):11954-11956. doi: 10.1039/C4CC05621C

    4. [4]

      Walsh M A, Walter S R, Bevan K H. Phenylacetylene One-Dimensional Nanostructures on the Si(100)-2 x1:H Surface[J]. J Am Chem Soc, 2010,132(9):3013-3019. doi: 10.1021/ja909139n

    5. [5]

      Si W, Xin P Y, Li Z T. Tubular Unimolecular Transmembrane Channels:Construction Strategy and Transport Activities[J]. Acc Chem Res, 2015,48(6):1612-1619. doi: 10.1021/acs.accounts.5b00143

    6. [6]

      Niu Z, Huang F, Gibson H W. Supramolecular AA-BB-Type Linear Polymers with Relatively High Molecular Weights via the Self-Assembly of Bis(m-phenylene)-32-Crown-10 Cryptands and a Bisparaquat Derivative[J]. J Am Chem Soc, 2011,133(9):2836-2839.  

    7. [7]

      Wang S L, Wang Y L, Chen Z X. The Marriage of Endo-Cavity and Exo-Wall Complexation Provides a Facile Strategy for Supramolecular Polymerization[J]. Chem Commun, 2015,51(16):3434-3437. doi: 10.1039/C4CC08820D

    8. [8]

      Li C J. Pillararene-Based Supramolecular Polymers:From Molecular Recognition to Polymeric Aggregates[J]. Chem Commun, 2014,50(83):12420-12433. doi: 10.1039/C4CC03170A

    9. [9]

      Hu X Y, Wu X, Wang S. Pillar [5] arene-Based Supramolecular Polypseudorotaxane Polymer Networks Constructed by Orthogonal Self-Assembly[J]. Polym Chem, 2013,4(16):4292-4297. doi: 10.1039/c3py00575e

    10. [10]

      Liang Z Q, Du J J, Sun L B. Design and Synthesis of Two Porous Metal-Organic Frameworks with NBO and AGW Topologies Showing High CO2 Adsorption Capacity[J]. Inorg Chem, 2013,52(19):10720-10722. doi: 10.1021/ic4017189

    11. [11]

      Jin Y H, Voss B A, Jin A. Highly CO2-Selective Organic Molecular Cages:What Determines the CO2 Selectivity[J]. J Am Chem Soc, 2011,133(17):6650-6658. doi: 10.1021/ja110846c

    12. [12]

      Jie K C, Zhou Y J, Yao Y. CO2-Responsive Pillar [5] arene-Based Molecular Recognition in Water:Establishment and Application in Gas-Controlled Self-Assembly and Release[J]. J Am Chem Soc, 2015,137(33):10472-10475.  

    13. [13]

      Jie K C, Yao Y, Chi X. A CO2-Responsive Pillar [5] arene:Synthesis and Self-assembly in Water[J]. Chem Commun, 2014,50(41):5503-5505. doi: 10.1039/c4cc01704h

    14. [14]

      Tan L L, Li H W, Zhou Y. Zn2+-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates[J]. Small, 2015,11(31):3807-3813. doi: 10.1002/smll.v11.31

    15. [15]

      Tan L L, Li H W, Tao Y. Pillar [5] arene-Based Supramolecular Organic Frameworks for Highly Selective CO2-Capture at Ambient Conditions[J]. Adv Mater, 2014,26(41):7027-7031. doi: 10.1002/adma.201401672

    16. [16]

      Ogoshi T, Takashima S, Yamagishi T A. Molecular Recognition with Microporous Multilayer Films Prepared by Layer-by-Layer Assembly of Pillar [5] arenes[J]. J Am Chem Soc, 2015,137(34):10962-10964. doi: 10.1021/jacs.5b07415

    17. [17]

      Xue M, Yang Y, Chi X. Pillararenes, A New Class of Macrocycles for Supramolecular Chemistry[J]. Acc Chem Res, 2012,45(8):1294-1308. doi: 10.1021/ar2003418

    18. [18]

      Zhang W, Chen M, Diao G W. Electrospinning β-Cyclodextrin/Poly(vinyl alcohol) Nano-brous Membrane for Molecular Capture[J]. Carbohydr Polym, 2011,86(3):1410-1416. doi: 10.1016/j.carbpol.2011.06.062

    19. [19]

      Hossain M F, Gong R H, Rigout M. Preparation and Characterization of Poly(ethylene oxide)-Loaded Hydroxypropyl-β-Cyclodextrin Nanofibers[J]. Polym Adv Technol, 2015,26(9):1184-1188. doi: 10.1002/pat.v26.9

    20. [20]

      Ogoshi T, Kanai S, Fujinami S. Para-bridged Symmetrical Pillar [5] arenes:Their Lewis Acid Catalyzed Synthesis and Host-Guest Property[J]. J Am Chem Soc, 2008,130(15):5022-5023. doi: 10.1021/ja711260m

    21. [21]

      Zhu K, Li S, Wang F. Anion-Controlled Ion-Pair Recognition of Paraquat by a Bis(m-phenylene)-32-crown-10 Derivative Heteroditopic Host[J]. J Org Chem, 2009,74(3):1322-1328. doi: 10.1021/jo802683d

    22. [22]

      Ogoshi T, Hashizume M, Yamagishi T A. Synthesis, Conformational and Host Guest Properties of Water-Soluble Pillar [5] arene[J]. Chem Commun, 2010,46(21)37083710.  

    23. [23]

      Ogoshi T, Nishida Y, Yamagishi T. Polypseudorotaxane Constructed from Pillar [5] arene and Viologen Polymer[J]. Macromolecules, 2010,43(7)31453147.  

    24. [24]

      Hu X B, Chen L, Si W. Pillar [5] arene Decaamine:Synthesis, Encapsulation of Very Long Linear Diacids and Formation of Ion Pair-Stopped[2] Rotaxanes[J]. Chem Commun, 2011,47(16):4694-4696. doi: 10.1039/c1cc10633c

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(2078)
  • HTML views(1174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return