Citation: GU Xuhan, PENG Yanqing, HUANG Xi, WANG Jiayi, SONG Gonghua. Combined Microwave and Ultrasound Irradiation Assisted Synthesis of Sulfones in Aqueous Media[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 16-23. doi: 10.11944/j.issn.1000-0518.2019.01.180048 shu

Combined Microwave and Ultrasound Irradiation Assisted Synthesis of Sulfones in Aqueous Media

  • Corresponding author: SONG Gonghua, ghsong@ecust.edu.cn
  • Received Date: 19 February 2018
    Revised Date: 19 April 2018
    Accepted Date: 15 June 2018

    Fund Project: Supported by the National Key Research and Development Plan of China(No.2017YFD0200504)the National Key Research and Development Plan of China 2017YFD0200504

Figures(1)

  • A green, efficient and simple method for the synthesis of sulfones under combined microwave and ultrasound irradiation was developed. The aromatic methyl phenyl sulfones were synthesized from arylmethyl chlorides and sodium benzenesulfonates in aqueous media under combined microwave and ultrasound irradiation. The effects of microwave power, ultrasonic power, materials molar ratio, substrate concentration and irradiation time were investigated. The optimal conditions for the synthesis of benzyl phenyl sulfone are:microwave power, 40 W; ultrasonic power, 50 W; molar ratio of benzyl chloride and sodium benzene sulfonate, 1:3; reaction time, 5 min. The obtained yield is 83% under these conditions. Compared with the reaction in oil bath, the reaction was accelerated about 42 times. Twenty three sulfones have been successfully synthesized with broad substrate generality.
  • 加载中
    1. [1]

      Simpkins N S. Sulphones in Organic Synthesis[M]. Oxford:Pergamum Press, 1993:1-4.

    2. [2]

      Trost B M. Chemical Chameleons Organosulfones as Synthetic Building Blocks[J]. Bull Chem Soc Jpn, 1988,61(1):107-124. doi: 10.1246/bcsj.61.107

    3. [3]

      Stephens C E, Felder T M, Sowell J W. Synthesis and Antiviral/Antitumor Evaluation of 2-Amino-and 2-Carboxamido-3-arylsulfonylthiophenes and Related Compounds as a New Class of Diarylsulfones[J]. Med Chem, 2001,9(5):1123-1132. doi: 10.1016/S0968-0896(00)00333-3

    4. [4]

      Crosignani S, Pretre A, Jorand L. Discovery of Potent, Selective, and Orally Bioavailable Alkynylphenoxyacetic Acid CRTH2(DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases[J]. J Med Chem, 2011,54(20):7299-7317. doi: 10.1021/jm200866y

    5. [5]

      La Regina G, Coluccia A, Brancale A. Indolylarylsulfones as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors:New Cyclic Substituents at Indole-2-carboxamide[J]. J Med Chem, 2011,54(6):1587-1598. doi: 10.1021/jm101614j

    6. [6]

      Padmavathi V, Thriveni P, Sudhakar R G. Synthesis and Antimicrobial Activity of Novel Sulfone-linked bis Heterocycles[J]. Eur J Med Chem, 2008,43(5):917-924. doi: 10.1016/j.ejmech.2007.06.011

    7. [7]

      Yasuo I, Kazunari O, Shigeyuki I. Studies on Sulfonylureas with Fusedheterocycles.Part 1.Synthesis of Novel Herbicidal Sulfonylurea Compounds with an Imidazo[1, 2-α]pyridine Moiety[J]. J Pestic Sci, 1993,18(2):175-182.

    8. [8]

      Vedula M S, Pulipaka A B, Venna C. New Styryl Sulfones as Anticancer Agents[J]. Eur J Med Chem, 2003,38(9):811-824. doi: 10.1016/S0223-5234(03)00144-2

    9. [9]

      Tai X, Yin X, Tan M. Crystal Structure and Antitumor Activity of Tri[2-[N-(4'-methylbenzylsulfonyl) amino]ethyl]-amine[J]. Chinese J Struct Chem, 2003,22(4):411-414.  

    10. [10]

      Silvestri R, Artico M, Regina G L. Anti-HIV-1 Activity of Pyrryl Arylsulfone(PAS) Derivatives:Synthesis and SAR Studies of Novel Esters and Amidesat the Position 2 of the Pyrrole Nucleus[J]. Il Farmaco, 2004,59(3):201-210. doi: 10.1016/j.farmac.2003.11.004

    11. [11]

      Shaabani A, Hezarkhani Z, Shaabani S. Cellulose Supported Manganese Dioxide Nanosheet Catalyzed Aerobic Oxidation of Organic Compounds[J]. RSC Adv, 2014,4(110):64419-64428. doi: 10.1039/C4RA11101J

    12. [12]

      Graybill B M. The Synthesis of Aryl Sulfones[J]. J Org Chem, 1967,32(9):2931-2933. doi: 10.1021/jo01284a075

    13. [13]

      Yuttapong S, Morgane P, Romain L. Thioamide-Substituted Cinchona Alkaloids as Efficient Organocatalysts for Asymmetric Decarboxylative Reactions of MAHOs[J]. Eur J Org Chem, 2017(29):4319-4323.  

    14. [14]

      Fu Y, Xu Q S, Li Q Z. Efficient Synthesis of Aliphatic Sulfones by Mg Mediated Coupling Reactions of Sulfonyl Chlorides and Aliphatic Halides[J]. Org Biomol Chem, 2017,15(13):2841-2845. doi: 10.1039/C7OB00251C

    15. [15]

      Chung T W, Chen C H, Lin C C. Exploring a Sulfone Linker Utilizing Trimethyl Aluminum as a Cleavage Reagent:Solid-phase Synthesis of Sulfonamides and Ureas[J]. Mol Divers, 2012,16(3):463-476. doi: 10.1007/s11030-012-9380-3

    16. [16]

      Isabelle A T, Alexander B, Mickael D. Synthesis of Chiral Thiazoline Ligands Tethered to a Sulfur Function and First Immobilization of a Thiazoline-Ligand[J]. Heteroat Chem, 2010,21(4):242-249. doi: 10.1002/(ISSN)1098-1071

    17. [17]

      Frank W L, Thomas C M, David H G. Preliminary Investigations on Novel Camphor-derived Chiral Sulfones:Completely Stereoselective Formation of Tricyclic β-Hydroxy Sulfones from 8-and 10-Functionalized Camphor Derivatives[J]. Tetrahedron, 2011,67(39):7517-7528. doi: 10.1016/j.tet.2011.07.081

    18. [18]

      Seth R, Peter W. Water-accelerated Organic Transformations[J]. Chem Commun, 2001(4):299-307. doi: 10.1039/b008252j

    19. [19]

      Riina K A, Nicholas E L. Suzuki Coupling of Aryl Chlorides with Phenylboronic Acid in Water, Using Microwave Heating with Simultaneous Cooling[J]. Org Lett, 2005,7(11):2101-2104. doi: 10.1021/ol0503384

    20. [20]

      Lin C C, Hsieh T H, Liao P Y. Practical Synthesis of N-Substituted Cyanamides via Tiemann Rearrangement of Amidoximes[J]. Org Lett, 2014,16(3):892-895. doi: 10.1021/ol403645y

    21. [21]

      LI Yiqun. Synthesis of Sulfones by Phase-Transfers-Alkylation of Arenesulfinate Salts[J]. Chem Res Appl, 1997,9(3):311-313.  

    22. [22]

      Jack K C, Christian P. Synthesis of Sulfones by Phase-Transfer Alkylation of Arenesulfinate Salts[J]. J Org Chem, 1985,50(8):1327-1329. doi: 10.1021/jo00208a044

    23. [23]

      Yi H, Zhen C C, Zhang G L. Organic Reactions in Ionic Liquids:An Efficient Method for the Synthesis of Aryl Sulfones by Alkylation of Sodium Arenesulfinates with Alkyl Halides[J]. Chem Inform, 2004,35(42):267-269.  

    24. [24]

      Varma R S. "Greener" Chemical Syntheses Using Mechanochemical Mixing or Microwave and Ultrasound Irradiation[J]. Green Chem Lett Rev, 2007,1(1):37-45. doi: 10.1080/17518250701756991

    25. [25]

      Katia M, Silvia T, Alessandro B. Combined Microwaves/Ultrasound, A Hybrid Technology[J]. Top Curr Chem, 2016,374(6)79. doi: 10.1007/s41061-016-0082-7

    26. [26]

      Giancarlo C, Pedro C. The Combined Use of Microwaves and Ultrasound:Improved Tools in Process Chemistry and Organic Synthesis[J]. Chem Eur J, 2007,13(7):1902-1909. doi: 10.1002/(ISSN)1521-3765

    27. [27]

      Peng Y Q, Song G H. Simultaneous Microwave and Ultrasound Irradiation:A Rapid Synthesis of Hydrazides[J]. Green Chem, 2001,3(6):302-304. doi: 10.1039/b108878p

    28. [28]

      Peng Y Q, Song G H. Combined Microwave and Ultrasound Accelerated Knoevenagel-Doebner Reaction in Aqueous Media:A Green Route to 3-Aryl Acrylic Acids[J]. Green Chem, 2003,5(6):704-706. doi: 10.1039/B310388A

    29. [29]

      Peng Y Q, Song G H. Dramatically Accelerated Synthesis of β-Aminoketones via Aqueous Mannich Reaction Under Combined Microwave and Ultrasound Irradiation[J]. Synlett, 2005,2005(14):2245-2247.  

    30. [30]

      Peng Y Q, Song G H. Surface Cleaning under Combined Microwave and Ultrasound Irradiation:Flash Synthesis of 4H-pyrano[2, 3-c] Pyrazoles in Aqueous Media[J]. Green Chem, 2006,8(6):573-575. doi: 10.1039/b601209d

    31. [31]

      Ju Y H, Kumar D, Varma R S. Revisiting Nucleophilic Substitution Reactions:Microwave-Assisted Synthesis of Azides, Thiocyanates, and Sulfones in an Aqueous Medium[J]. J Org Chem, 2006,71(17):6697-6700. doi: 10.1021/jo061114h

    32. [32]

      Mehdi K M, Kiumars B, Mohammad K. The Efficient and Chemoselective MoO3-Catalyzed Oxidation of Sulfides to Sulfoxides and Sulfones with H2O2[J]. Can J Chem, 2007,85(1):7-11.  

    33. [33]

      Shyam P K, Jang H Y. Synthesis of Sulfones and Sulfonamides via Sulfinate Anions:Revisiting the Utility of Thiosulfonates[J]. J Org Chem, 2017,82(3):1761-1767. doi: 10.1021/acs.joc.6b03016

    34. [34]

      Kiumars B, Mohammad M K, Mehdi S A. TAPC-Promoted Oxidation of Sulfides and Deoxygenation of Sulfoxides[J]. J Org Chem, 2010,75(18):6208-6213. doi: 10.1021/jo1011784

    35. [35]

      Ryoichi K, Yutaka K, Tsuyoshi S. Transformation of Carbonates into Sulfones at the Benzylic Position via Palladium-Catalyzed Benzylic Substitution[J]. Org Lett, 2005,7(14):2973-2975. doi: 10.1021/ol0509787

    36. [36]

      Asthana R S, Misra G S. Mixed Aromatic Aliphatic Sulfones[J]. J Indian Chem Soc, 1954,31:459-460.  

    37. [37]

      Abrunhosa I, Gulea M, Masson S. Efficient New Protocol to Synthesize Aromatic and Heteroaromatic Dithioesters[J]. Synthesis, 2004(6):928-934. doi: 10.1055/s-2004-822311

    38. [38]

      Dass G B, Roy M, Roy S. Homolytic Displacement at Saturated Carbon in Organocobaloximes[J]. J Chem Soc Perkin Trans 2, 1990(4):537-543.  

    39. [39]

      Yue G R, She X G, Zhang Z. A Tandem Michael Addition-Rearrangement-Carbonylation by (4-Nitrophenylsulfonylmethyl) Benzene and Its Derivatives with Methacrylates under PTC[J]. J Chem Res, 2003(9):559-561.  

    40. [40]

      Peng H J, Cheng Y F, Ni N T. Synthesis and Evaluation of New Antagonists of Bacterial Quorum Sensing in Vibrio harveyi[J]. Chem Med Chem, 2009,4(9):1457-1468. doi: 10.1002/cmdc.v4:9

    41. [41]

      Zhao M M, Qu C X, Lynch J E. Zn/CuI-Mediated Coupling of Alkyl Halides with Vinyl Sulfones, Vinyl Sulfonates, and Vinyl Sulfonamides[J]. J Org Chem, 2005,70(17):6944-6947.  

    42. [42]

      Maloney K M, Kuethe J T, Linn K. A Practical, One-Pot Synthesis of Sulfonylated Pyridines[J]. Org Lett, 2011,13(1):102-105. doi: 10.1021/ol102629c

  • 加载中
    1. [1]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    2. [2]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(2)
  • Abstract views(652)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return