Citation: ZHU Yun, HONG Liang, JIN Baokang. Construction and Characterization of a High Temperature Infrared Spectroelectrochemical Thin-Layer Cell[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 107-113. doi: 10.11944/j.issn.1000-0518.2019.01.180041 shu

Construction and Characterization of a High Temperature Infrared Spectroelectrochemical Thin-Layer Cell

  • Corresponding author: JIN Baokang, bkjinhf@aliyun.com
  • Received Date: 8 February 2018
    Revised Date: 26 March 2018
    Accepted Date: 28 May 2018

    Fund Project: the National Natural Science Foundation of China 21375001Supported by the National Natural Science Foundation of China(No.21175001, No.21375001)the National Natural Science Foundation of China 21175001

Figures(6)

  • In order to investigate electrochemical process at elevated temperature, a high temperature thin-layer cell(HTC) was constructed for in situ infrared(IR) spectroelectrochemistry. It works very well in the temperature range from ambient to 373 K(depend on boiling point of solvent) with the control precision within ±0.5 K to apply for room-temp and high-temp in situ IR spectroelectrochemistry. The cell can be facilely cleaned and conveniently manipulated in both aqueous and non-aqueous system. The electrochemical and IR performance were characterized with K3[Fe(CN)6] in aqueous and with benzoquinone(BQ) in ionic liquid BMIMPF6 by cyclic voltammetry and in situ IR spectroelectrochemistry at various temperature. Experimental results suggest that the cell has an excellent electrochemical performance within wider range of temperature, and good signal-noise ratio for IR absorption peaks during cyclic voltammetry(CV) scan. In conclusion, HTC has a promising application in electrochemical process in which the temperature plays an important role.
  • 加载中
    1. [1]

      Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications[M]. SHAO Yuanhua, ZHU Guoyi, DONG Xiandui, et al. Trans. 2nd Ed. Trans. Beijing: Chemical Industry Press, 2005: 472-492(in Chinese).

    2. [2]

      Jin B K, Li L, Huang J L. IR Spectroelectrochemical Cyclic Voltabsorptometry and Derivative Cyclic Voltabsorptometry[J]. Anal Chem, 2009,81(11):4476-4481. doi: 10.1021/ac9003634

    3. [3]

      Liu P, Jin B K, Cheng F L. A Low Temperature in situ Infrared Reflected Absorbance Spectroelectrochemical(LT IRRAS) Cell[J]. J Electroanal Chem, 2007,603(2):269-274. doi: 10.1016/j.jelechem.2007.02.012

    4. [4]

      Zavarine I S, Kubiak C P. A Versatile Variable Temperature Thin Layer Reflectance Spectroelectrochemical Cell[J]. J Electroanal Chem, 2001,495(2):106-109. doi: 10.1016/S0022-0728(00)00394-6

    5. [5]

      Mahabiersing T, Luyten H, Nieuwendam R C. Synthesis, Spectroscopy and Spectroelectrochemistry of Chlorocarbonyl{1, 2-Bis[(2, 6-diisopropylphenyl)imino]acenaphthene-κ2-N, N'}rhodium(Ⅰ)[J]. Collect Czec Chem Commun, 2003,68(9):1687-1709. doi: 10.1135/cccc20031687

    6. [6]

      Laviron E. The Use of Polarography and Cyclic Voltammetry for the Study of Redox Systems with Adsorption of the Reactants. Heterogeneous vs. Surface Path[J]. J Electroanal Chem, 1995,382(1995):111-127.  

    7. [7]

      Brown A P, Ason F C. Cyclic and Differential Pulse Voltammetric Behavior of Reactants Confined to the Electrode Surface[J]. Anal Chem, 1977,49(11):1589-1595. doi: 10.1021/ac50019a033

    8. [8]

      ZHAO Zhi, TIAN Peng, CHEN Qingyang. Study of the Application of Ionic Liquids[J]. Chinese J Shandong Chem Ind, 2017,46(2):42-43. doi: 10.3969/j.issn.1008-021X.2017.02.018

    9. [9]

      Da Silva L C O, Soares B G. New all Solid-state Polymer Electrolyte Based on Epoxy Resin and Ionic Liquid for High Temperature Applications[J]. J Appl Polym Sci, 2018,135(9)45838. doi: 10.1002/app.45838

    10. [10]

      Paravannoor A, Augustine C A. Interfacial Properties of Alloy Anodes in Combination with Room Temperature Ionic Liquid Electrolytes:A Review Based on Li Secondary Batteries[J]. J Electroanal Chem, 2017,805:98-109. doi: 10.1016/j.jelechem.2017.10.001

    11. [11]

      Seyedlar A O, Martins J P D, Sebastiao P J. Dynamics of Binary Mixtures of an Ionic Liquid and Ethanol by NMR[J]. Magn Reson Chem, 2018,56(2):108-112. doi: 10.1002/mrc.v56.2

    12. [12]

      Wu T Y, Su S G, Chiu C L. Impact of Polyethyleneglycol Addition on Diffusion Coefficients in Binary Ionic Liquid Electrolytes Composed of Dicationic Ionic Liquid and Polyethyleneglycol[J]. Magn Reson Chem, 2018,56(2):86-94. doi: 10.1002/mrc.v56.2

    13. [13]

      YAN Hua, ZHANG Hongmei, ZHANG Lijing. Research Progress of Ionic Liquids[J]. Chinese J Shandong Chem Ind, 2016,45(23):55-57. doi: 10.3969/j.issn.1008-021X.2016.23.021

    14. [14]

      ZHANG Suojiang, XU Chunming, LV Xingmei, et al. Ionic Liquids and Green Chemistry[M]. Beijing:Science Press, 2008:524-533(in Chinese).

    15. [15]

      ZHUANG Qiankun, CHEN Hongyuan. The Temperature Effect of Microelectrode and Its Applications to the Determination of Kinetic Parameters[J]. Chem J Chinese Univ, 1996,17(2):224-226. doi: 10.3321/j.issn:0251-0790.1996.02.031

    16. [16]

      Pons S, Datta M, Mcaieer J F. Infrared Spectroelectrochemical of the Fe(CN)64-/Fe(CN)63- Redox System[J]. J Electroanal Chem, 1984,160:369-376. doi: 10.1016/S0022-0728(84)80141-2

    17. [17]

      Astuti Y, Topoglidis E, Briscoe P B. Proton-Coupled Electron Transfer of Flavodoxin Immobilized on Nanostructured Tin Dioxide Electrodes:Thermodynamics Versus Kinetics Control of Protein Redox Function[J]. J Am Chem Soc, 2004,126(25):8001-8009. doi: 10.1021/ja0496470

    18. [18]

      Jin B K, Huang J L, Zhao A K. Direct Evidence of Hydrogen-bonding and/or Protonation Effect on p-Benzoquinone Electrochemical Reduction by in situ IR Spectroelectrochemical Study[J]. J Electroanal Chem, 2010,650(1):116-126. doi: 10.1016/j.jelechem.2010.08.015

    19. [19]

      Kim Y O, Jung Y M, Kim S B. Two-Dimensional Correlation Analysis of Spectroelectrochemical Data for p-Benzoquinone Reduction in Acetonitrile[J]. Anal Chem, 2004,76(17):5236-5240. doi: 10.1021/ac049587g

    20. [20]

      LI Tong, JIN Baokang. Electrochemical Redox of Benzoquinone in Ionic Liquids[J]. Chem J Chinese Univ, 2014,35(4):847-852.  

    21. [21]

      Wang Y J, Rogers E I, Belding S R. The Electrochemical Reduction of 1, 4-Benzoquinone in 1-Ethyl-3-methylimidazolium Bis(trifluoromethane-sulfonyl)-imide, C(2)mim NTf2:A Voltammetric Study of the Comproportionation Between Benzoquinone and the Benzoquinone Dianion[J]. J Electroanal Chem, 2010,648(2):134-142. doi: 10.1016/j.jelechem.2010.07.016

  • 加载中
    1. [1]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(5)
  • Abstract views(1230)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return